Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature

Nature Materials - Tập 5 Số 10 - Trang 823-829 - 2006
Tianqi Zhao1,2, A. Schöll3, F. Zavaliche2, K. Lee2, M. Barry2, Andrew Doran3, M. P. Cruz4,2, Ying‐Hao Chu5, Claude Ederer6, Nicola A. Spaldin6, R. R. Das7, D. M. Kim7, Seung‐Hyub Baek7, Chang‐Beom Eom7, R. Ramesh2
1Seagate Technology
2University of California at Berkeley
3Lawrence Berkeley National Laboratory
4Universidad Nacional Autónoma de México
5Department of Physics & Department of Materials Science and Engineering, University of California, Berkeley, USA
6University of California at Santa Barbara
7University of Wisconsin, Madison

Tóm tắt

Từ khóa


Tài liệu tham khảo

Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D 38, R123–R152 (2005).

Spaldin, N. A. & Fiebig, M. The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005).

Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006).

Fiebig, M., Lottermoser, Th., Fröhlich, D., Goltsev, A. V. & Pisarev, R. V. Observation of coupled magnetic and electric domains. Nature 419, 818–820 (2002).

Lottermoser, Th. et al. Magnetic phase control by an electric field. Nature 430, 541–544 (2004).

Nan, C. W., Liu, G., Liu, Y. & Chen, H. Magnetic-field-induced electric polarization in multiferroic nanostructures. Phys. Rev. Lett. 94, 197203 (2005).

Ascher, E., Rieder, H., Schmid, H. & Stössel, H. Some properties of ferromagnetoelectric nickel-iodine boracite, Ni3B7O13I. J. Appl. Phys. 37, 1404–1405 (1966).

Shastry, S., Srinivasan, G., Bichurin, M. I., Petrov, V. M. & Tatarenko, A. S. Microwave magnetoelectric effects in single crystal bilayers of yttrium iron garnet and lead magnesium niobate-lead titanate. Phys. Rev. B 70, 064416 (2004).

Zheng, H. et al. Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303, 661–663 (2004).

Hill, N. A. Why are there so few magnetic ferroelectrics. J. Phys. Chem. 104, 6694–6709 (2000).

Kimura, T., Lawes, G. & Ramirez, A. P. Electric polarization rotation in a hexaferrite with long-wavelength magnetic structures. Phys. Rev. Lett. 94, 137201 (2005).

Kubel, F. & Schimid, H. Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3 . Acta Crystallogr. B 46, 698–702 (1990).

Fischer, P., Polomska, M., Sosnowska, I. & Szymanski, M. Temperature dependence of the crystal and magnetic structure of BiFeO3 . J. Phys. Solid State Phys. 13, 1931–1940 (1980).

Michel, C., Moreau, J.-M., Achenbach, G. D., Gerson, R. & James, W. J. The atomic structure of BiFeO3 . Solid State Commun. 7, 701–704 (1969).

Wang, J. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003).

Dho, J., Qi, X., Kim, H., MacManus-Driscoll, J. L. & Blamire, M. G. Large electric polarization and exchange bias in multiferroic BiFeO3 . Adv. Mater. 18, 1445–1448 (2006).

Li, J. F. et al. Dramatically enhanced polarization in (001), (101), and (111) BiFeO3 thin films due to epitiaxial-induced transitions. Appl. Phys. Lett. 84, 5261–5263 (2004).

Yun, K. Y. et al. Structural and multiferroic properties of BiFeO3 thin films at room temperature. J. Appl. Phys. 96, 3399–3403 (2004).

Yun, K. Y., Noda, M. & Okuyama, M. Prominent ferroelectricity of BiFeO3 thin films prepared by pulsed-laser deposition. Appl. Phys. Lett. 83, 3981–3983 (2003).

Das, R. R. et al. Synthesis and ferroelectric properties of epitaxial BiFeO3 thin films grown by sputtering. Appl. Phys. Lett. 88, 242904 (2006).

Ederer, C. & Spaldin, N. A. Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71, 060401(R) (2005).

Neaton, J. B., Ederer, C., Waghmare, U. V., Spaldin, N. A. & Rabe, K. M. First-principles study of spontaneous polarization in multiferroic BiFeO3 . Phys. Rev. B 71, 014113 (2005).

Thole, B. T., van der Laan, G. & Sawatzky, G. A. Strong magnetic dichroism predicted in the M4,5 X-ray absorption spectra of magnetic rare-earth materials. Phys. Rev. Lett. 55, 2086–2088 (1985).

Czekaj, S., Nolting, F., Heyderman, L. J., Willmott, P. R. & van der Laan, G. Sign dependence of the X-ray magnetic linear dichroism on the antiferromagnetic spin axis in LaFeO3 thin films. Phys. Rev. B 73, 020401(R) (2006).

Bai, F. et al. Destruction of spin cycloid in (111)c-oriented BiFeO3 thin films by epitaxial constraint: Enhanced polarization and release of latent magnetization. Appl. Phys. Lett. 86, 032511 (2005).

Zavaliche, F. et al. Ferroelectric domain structure in epitaxial BiFeO3 films. Appl. Phys. Lett. 87, 182912 (2005).

Zavaliche, F. et al. Polarization switching in epitaxial BiFeO3 films. Appl. Phys. Lett. 87, 252902 (2005).

Scholl, A. et al. Observation of antiferromagnetic domains in epitaxial thin films. Science 287, 1014–1016 (2000).

Scholl, A., Ohldag, H., Nolting, F., Stöhr, J. & Padmore, H. A. X-ray photoemission electron microscopy, a tool for the investigation of complex magnetic structures (invited). Rev. Sci. Instrum. 73, 1362–1366 (2002).

Luning, J. et al. Determination of the antiferromagnetic spin axis in epitaxial LaFeO3 films by x-ray magnetic linear dichroism spectroscopy. Phys. Rev. B 67, 214433 (2003).

Yang, W. C., Rodriguez, B. J., Gruverman, A. & Nemanich, R. J. Polarization-dependent electron affinity of LiNbO3 surfaces. Appl. Phys. Lett. 85, 2316–2318 (2004).

Tsuboi, T. Linear dichroism study of the structural phase transition of BaMnF4 . Phys. Rev. B 39, 2842–2845 (1989).

Ederer, C. & Spaldin, N. Effect of epitaxial strain on the spontaneous polarization of thin film ferroelectrics. Phys. Rev. Lett. 95, 257601 (2005).

Ederer, C. & Spaldin, N. Influence of strain and oxygen vacancies on the magnetoelectric properties of multiferroic bismuth ferrite. Phys. Rev. B 95, 224103 (2005).