Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nghiên cứu điện, ống kính nhiệt và quang học của phim Fluorescein phục vụ cho ứng dụng thiết bị quang điện hữu cơ
Journal of Fluorescence - Trang 1-12 - 2023
Tóm tắt
Bài báo này được dành cho việc nghiên cứu các thông số điện môi và quang điện phi tuyến, hành vi quang học phi tuyến, thông số ống kính nhiệt và tự tán xạ của phim Polymethyl methacrylate (PMMA) pha Fluorescein (FLs). Các phim được chuẩn bị với nồng độ 60 mM. Các nghiên cứu này dựa trên các giá trị tính toán của chỉ số khúc xạ, hệ số hấp thụ, khoảng cách năng lượng, hệ số tắt sáng và chỉ số khúc xạ phi tuyến $$(n_{2})$$. Các phim polymer được chuẩn bị bằng kỹ thuật đổ khuôn. Tất cả các mẫu đã được nghiên cứu trước đó bằng các phép đo quang phổ UV–Vis–NIR và kính hiển vi quang học SEM và ATM. Sử dụng quang phổ ống kính nhiệt, một cuộc điều tra về các đặc tính thermo-optical cũng như chỉ số khúc xạ phi tuyến đã được thực hiện. Trong phương pháp này, một chùm tia bơm và một chùm tia dò được đưa vào trạng thái đồng dòng với nhau. Để xác định chỉ số khúc xạ phi tuyến $$(n_{2})$$. Các giá trị cao của chỉ số khúc xạ phi tuyến dự đoán một tương lai tươi sáng cho các vật liệu trong các ứng dụng quang học. Những kết quả này chỉ ra rằng thuốc nhuộm mới là ứng cử viên triển vọng cho các ứng dụng trong thiết bị quang học phi tuyến. Các cuộc điều tra cũng được thực hiện trên các thiết bị quang điện hữu cơ bên cạnh các thiết bị bao gồm các lớp hoạt động với polymer dẫn điện của PHPP:P3HT và PHPP:P3HT/Fls. Các phương pháp tổng hợp polymer và thuốc nhuộm đã được trình bày và các tính chất vật lý của chúng được cung cấp.
Từ khóa
#Fluorescein #PMMA #tính chất điện môi #quang học phi tuyến #ống kính nhiệt #thiết bị quang điện hữu cơTài liệu tham khảo
Shabir G, Saeed A, Ali CP (2018) A review on the recent trends in synthetic strategies and applicationof xanthene dyes. Mini-Rev Org Chem 15(3):166–197. https://doi.org/10.2174/1570193X14666170518130008.
Neckers DC, Valdes-Aguilera OM (1993) Photochemistry of the xanthene dyes. Adv Photochem 18:315–394. https://doi.org/10.1002/9780470133491.ch4 .
Salem A (2016) A Study on the Structural, Electrical and Dielectric Properties of Fluorescein Dye as a New Organic Semiconductor Material. IOSR J Electr Electron Eng (IOSR-JEEE) 11:34–41. https://doi.org/10.9790/1676-1106043441 .
Shankarling GS, Jarag KJ (2010) Laser Dyes. Resonance 15:804–818. https://doi.org/10.1007/s12045-010-0090-9
Magde D, Wong R, Seybold PG (2002) Fluorescence Quantum Yields and Their Relation to Lifetimes of Rhodamine 6G and Fluorescein in Nine Solvents: Improved Absolute Standards for Quantum Yields. Photochem Photobiol 75:327. https://doi.org/10.1562/0031-8655(2002)0750327FQYATR2.0.CO2
Wolfe DR (1986) Fluorescein angiography basic science and engineering. Ophthalmology 93:1617–1620. https://doi.org/10.1016/S0161-6420(86)33521-8
Wipperman J, Dorsch JN (2013) Evaluation and management of corneal abrasions. Am Fam Physician 87: 114–120. https://doi.org/10.1155/2014/901901
Spaide RF, Klancnik JM, Cooney MJ (2015) Retinal vascular layers imaged by fluoresceinangiography and optical coherence tomography angiography. JAMA Ophthalmology 133:45–50. https://doi.org/10.1001/jamaophthalmol.2014.3616
Komatsu H, Iwasawa N, Citterio D, Suzuki Y, Kubota T, Tokuno K, Kitamura Y, Oka K, Suzuki K (2004) Design and Synthesis of Highly Sensitive and Selective Fluorescein-Derived Magnesium Fluorescent Probes and Application to Intracellular 3D Mg2+ Imaging. J of the American Chemical Society 126:16353–16360. https://doi.org/10.1021/ja049624l
Kaines A, Tsui SD, Schwartz S (2009) The Use of Ultra-Wide Field Fluorescein Angiography in Evaluation and Management of Uveitis. Semin Ophthalmol 24:19–24. https://doi.org/10.1080/08820530802520095
Legentil PF, Leroux ST, Mahiou R, Chadeyron G (2019) Revisiting fluorescein and layered double hydroxide using a synergistic approach: A complete optical study. J Lumin 215:116634. https://doi.org/10.1016/j.jlumin.2019.116634 .
Peng GD, Zhengjun X, Pak LC (1998) Fluorescence decay and recovery in organic dye-doped polymer optical fibbers. J Light Wave Technol 16:2365–2372. https://doi.org/10.1109/50.736603
Li CF, Jin F, Dong XZ, Chen WQ, Duan XM (2007) Photoluminescence of PMMA doped with fluorescein and carbosilane dendrimer and lasing in PBG resonance cavity. J Lumin 127:321–326. https://doi.org/10.1016/j.jlumin.2007.01.006 .
Capan I, Tarimci C, Hassan AK (1982) Characterisation and optical vapour sensing properties of PMMA thin films. Mater Sci Eng 29:2016–2027. https://doi.org/10.1016/j.msec.2008.05.021
Oudar JL, Zyss J (2016) Structural dependence of nonlinear-optical properties of methyl-(2,4-dinitrophenyl)-amino propanoate crystals. Phys Rev A 26:140–143. https://doi.org/10.1103/PhysRevA.26.2016
Capan I, Tarimci C, Hassan AK, Tanrisever T (1993) Characterisation and optical vapour sensing properties of PMMA thin films. Mater Sci Eng C 29:152–156. https://doi.org/10.1039/C39930000152
Pavel AN, Roman SK, Stepan SD, Ljudmila SK, Marina VK, Konstantin GL, Galina AK, Konstantin AL, Elena AK, Yuri NA (2020) Fluorescein Derivatives as Antibacterial Agents Acting via Membrane Depolarization. Biomolecules 10:309–320. https://doi.org/10.3390/biom10020309
Hernán V, Ramalinga VM, Luis A, Carlos C, Natalia P, Mohamed D, Bernabé R, Homero U (2020) Antibacterial Activity and Fluorescence Properties of 4,7-Dichloro-2-Quinolinemethylacrylate. J Chil Chem Soc 65:4784–4789. https://doi.org/10.4067/S0717-97072020000204784
Todorov T, Nikolova L, Tomova N, Dragostinova V (1981) Photochromism and dynamic holographic recording in a rigid solution of fluorescein. Opt Quantum Electron 13:209–215. https://doi.org/10.1007/BF00620323
Kramer MA, Tompkin W, Boyd RW (1986) Nonlinear-optical interactions in fluorescein doped boric acid glass. Phys Rev A 34:2026–2031. https://doi.org/10.1103/PhysRevA.34.2026
Tompkin WR, Malcuit MS, Boyd RW (1990) Enhancement of the nonlinear optical properties of fluorescein doped boric-acid glass through cooling. Appl Opt 29:3921–3926. https://doi.org/10.1364/AO.29.003921
Abutalib MM, Shkir M, Yahia IS, Al-Faify S, El-Naggar AM, Ganesh V (2016) Thickness dependent optical dispersion and nonlinear optical properties of nanocrystalline fluorescein dye thin films for optoelectronic applications. Optik 127:6601–6609. https://doi.org/10.1016/j.ijleo.2016.04.136
Zahran HY, Iqbal J, Yahia IS (2016) Optical constants and nonlinear calculations of fluorescein/FTO thin film optical system. Physica B 500:98–105. https://doi.org/10.1016/j.physb.2016.07.034
Anthony G, Rui FS, Marvin W (1994) Nonlinear Optics of Organic and Polymers materials. Phys Today 47:51–57. https://doi.org/10.1063/1.881433
Nalwa HS Miyata S (1997) Nonlinear Optics of Organic Molecules and Polymers, CRC Press, Boca Raton, Florida ch. I 1:61l-797
Hussain AB, Riyadh CHA, Mohammed TO (2020) Study on effect of Gamma radiation on some linear and nonlinear properties of Pyronine Y. AIP Conf Proc 2290:050035. https://doi.org/10.1063/5.0027452
Manikandan KM, Yelilarasi A, Senthamaraikannan P, Saravanakumar SS, Khan A, Asiri AM (2018) The conducting polymer electrolyte based on polypyrrole-polyvinyl alcohol and its application in low-cost quasi-solid-state dye-sensitized solar cells. J Solid State Electrochem 22:3785–3797. https://doi.org/10.1007/s10008-018-4070-4
Singh PK, Nagarale R, Pandey SP, Rhee HW, Bhattacharya B (2011) Present status of solid-state photo electrochemical solar cells and dye sensitized solar cells using PEO-based polymer electrolytes. Adv Nat Sci Nanosci Nanotechnol 2:023002–023015. https://doi.org/10.1088/2043-6262/2/2/023002
Alfahed RKF, Dheyaa A, Zahraa Y, Hussain AB, Kareem KM (2023) Preparation and characterization of tin chloride-based polymeric composite for gamma shielding applications. Appl Radiat Isot 196:110774. https://doi.org/10.1016/j.apradiso.2023.110774
Alfahed RKF, Imran A, Majeed MS, Hussain AB (2020) Photoluminescence characterizations and nonlinear optical of PM-355 nuclear track detector film by alpha-particle and laser irradiation. Physica Scripta 95:075709 (8pp). https://doi.org/10.1088/1402-4896/ab7e33
Alfahed RKF, Hussain AB, Abu TYA, Noor AS (2021) Investigation of third order nonlinearity of Ethidium bromide doped deoxyribonucleic acid (DNA). J Phys Conf Series 1963:012136. https://doi.org/10.1088/1742-6596/1963/1/012136
Hussain AB, Abu TYA, Alfahed RKF (2021) Study the Effect of Concentration on the Evolution of Far Field Diffraction Patterns of Bromocresol Purple and Congo Red Solution. J Phys Conf Series 1963:012013. https://doi.org/10.1088/1742-6596/1963/1/012013
Abdullah AH, Musa AA, Alfahed RKF, Hussain AB (2020) Diffracting samples, Nonlinear optical properties and morphology for (2- hydroxyphenyl) [2-(2-methoxybenzylideneamino)- 5-methyl phenyl] telluride film. AIP Conf Proc 2290:050049. https://doi.org/10.1063/5.0027845
Hussain AB (2012) Study on Optical Constants and Refractive Index Dispersion of Neutral red Doped Polymer Film. Am J Appl Sci 9:250–253. https://doi.org/10.3844/ajassp.2012.250.253
Alfahed RKF, Hussain AB, Fouad Z R, Mohammad K K (2020) Measurement of the thermo-optic coefficient and Ring surface profile of sulfadiazine azo dye by using milli watts cw laser beams. IOP Conf Series Mater Sci Eng 928:072071. https://doi.org/10.1088/1757-899X/928/7/072071
Hussain AB, Taha AY, Abdulkader AF, Emshary CA (2012) Preparation and study of the electrical and optical properties of a new azo dye (4-Acetaminophenol-[2- (4-Azo)]-4- amino dipheyl sulfone). Journal of Ovonic Research 8:161–170
Al-Asadi AS, Henley LA, Ghosh S, Quetz A, Dubenko I, Pradhan N, Balicas L, Perea LN, Carozo V, Lin Z (2016) Fabrication and characterization of ultraviolet photosensors from ZnO nanowires prepared using chemical bath deposition method. J Appl Phys 119
Alfahed RF, Al-Asadi AS, Hussain AB, Khalid IA (2019) Structural, morphological, and Z-scan technique for a temperature-controllable chemical reaction synthesis of zinc sulfide nanoparticles. Appl Phys B 125:48. https://doi.org/10.1007/s00340-019-7154-7
Hussain AB, Al-Maliki A, Alfahed RKF, Ali SB, Al-Ahmad AY, Al-Saymari FA, Rita SE (2018) Synthesis, surface profile, nonlinear reflective index and photophysical properties of curcumin Compound. J Mater Sci: Mater Electron 29:10890–10903. https://doi.org/10.1007/s10854-018-9167-0
Shaaker HS, Hussain A, Hussain AB (2012) Determination of the optical constants and optical Limiting of doped malachite green thin films by the spray method. Adv Appl Sci Res 32940–2946
Wemple SH, DiDomenico M (1971) Behavior of the electronic dielectric constant in covalent and ionic. Materials Phys Rev B 3:1338–1351. https://doi.org/10.1103/PhysRevB.3.1338
Moss TS (1959) Optical Properties of Semi-conductors, CH-2, Dispersion Theory, Academic Press INC., New York 15:33
Alfahed RKF, Mohammad KK, Majeed MS, Hussain AB, Ali KM, Kadem BY(2019) Preparation morphological, and mechanical characterization of titanium dioxide (TiO2)/ polyvinyl alcohol (PVA) composite for gamma-rays radiation shielding, IOP Conf Series J Phys Conf Series 1279:012019 (10 pages)
Hussain AB, Hanan AH, Alfahed RKF, Khalid IA (2021) Second-order hyperpolarizability and nonlinear optical properties of novel organic compound-doped poly (O- methoxyaniline) polymer film. J Mater Sci: Mater Electron 32:14623–14641. https://doi.org/10.1007/s10854-021-06021-2
Ahmed SH, El Radaf IM (2023) Effect of fluorine doping on the structural, optical, and electrical properties of spray deposited Sb2O3 thin films. Mater Sci Semicon Proc 160: 107405–104017. (13pages). https://doi.org/10.1016/j.mssp.2023.107405
Adair R, Chase LL, Payne SA (1989) Nonlinear refractive index of optical crystals. Phys Rev B 39:3337. https://doi.org/10.1103/PhysRevB.39.3337
Abdolahzadeh ZA, Ghodsi FE (2012) Surface morphology and optoelectronic studies of sol-gel derived nanostructured CdO thin films: heat treatment effect. J Mater Sci Mater Electron 23:1628–1639. https://doi.org/10.1007/s10854-012-0640-x
Abdulameer I, Sattar JB, Abdalrahman A, Hussain AB (2020) Gamma irradiation impact on the morphology and thermal blooming of sodalime glass. AIP Conf Proc 2290:050038. https://doi.org/10.1063/5.0031473
Narayanan V, Thareja RK (2006) Harmonic generation in ZnO nanocrystalline laser deposited thin Films. Opt Commun 260:170. https://doi.org/10.1016/j.optcom.2005.09.073
Al-Hazam HA, Alfahed RKF, Abdulameer I, Hussain AB, Hussain SS, Alsalihi A, Khalid IA (2019) Preparation and optoelectronic studies of the organic compound [2-(2,3-dimethyl phenylamino)-N-Phenyl benzamide doped (PMMA)]. J Mater Sci Mater Electron 30:10284–10292. https://doi.org/10.1007/s10854-019-01365-2
Perreux L, Lopupy A, Volatron F (2002) Solvent-free preparation of amides from acids and primary amines under microwave irradiation, Tetrahedron 58:2155
Sofiani Z, Sahraoui B, Addou M, Adhiri R, Alauoui Lamrani M, Dghoughi L, Fellahi N, Derkowska B, Bala W (2007) Third order non linear optical properties of ZnO: Al thin film. J Appl Phys 101
Hasan HA, Nadia AHA, Hussain AB, Alfahed RK, Khalid IA (2023) Effects of temperature on structural and linear/nonlinear optical properties of CdS nanoparticles film deposited by chemical reaction method. Opt Quant Electron 55:555. https://doi.org/10.1007/s11082-023-04835-4
Can-Uc B, Rojo RR, Lizarraga-Medina EG, Jurado-González JA, Tiznado H (2023) Linear and nonlinear optical properties of Al2O3/Y2O3 nanolaminates fabricated by atomic layer deposition. Optics Laser Technol 160:109063. https://doi.org/10.1016/j.optlastec.2022.109063
AL-Ahmad AY, AL-Mudhaffer MF, Hussain A B, Emshary CA, (2013) Nonlinear optical and thermal properties of BCP: PMMA films determined by thermal self-diffraction. Opt Laser Technol 54:72–78. https://doi.org/10.1016/j.optlastec.2013.05.009
Baesso ML, Shen J, Snook RD (1994) Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelengths. J Appl Phys 75:3738. https://doi.org/10.1063/1.356045
Yuan L, Wuhong Z, Lixiang C (2022) Thermal lens effect with light’s orbital angular momentum. Opt Express 30:30210–32018. https://doi.org/10.1364/OE.465600
Alfahed RKF, Abdulameer I, Hussain AB, Abdalrahman A (2020) Synthesis, optical limiting behavior, thermal blooming and nonlinear studies of dye-doped polymer films. J Mater Sci: Mater Electron 31:13862–13873. https://doi.org/10.1007/s10854-020-03946-y
Krzysztof D (2021) Thermal lensing: outside of the lasing medium. Appl Phys B 128:18–38. https://doi.org/10.1007/s00340-021-07718-2
Hussain AB, AL-Aladil K, Lazim H G, Al-Ahmad AY, (2016) Thermal blooming and photoluminescence characterizations of sol-gel CdO-SiO2 with different nanocomposite. J Mater Sci: Mater Electron 27:2212–2220. https://doi.org/10.1007/s10854-015-4013-0
Hussain AB (2014) Thermal lens and all optical switching of new organometallic compound doped polyacrylamide gel. Results in Physics 4:69–72. https://doi.org/10.1016/j.rinp.2014.05.004
Alfahed RKF, Al-Asadi AS, Al-Mudhaffer MF, Hussain AB (2021) Synthesis, morphological and optical characterizations of the poly (O-toluidine)- LiCl networks thin film. Opt Laser Technol 106524. https://doi.org/10.1016/j.optlastec.2020.106524
Gordon JP, Leite RCC, Moore RS, Porto SPS, Whinnery JR (1965) Long transient effects in lasers with inserted liquid samples. J Appl Phys 36:3–8
Mengxiao W, Guanghong W, Wenbo G, Shangzhi, Lei Z, Xiaohua X, Daoren G, Fei Y, Libin M, Hongwei D, Wenjing W (2023) Influence of In2O3:SnO2 films at different sputtering power on efficiency and stability of heterojunction solar cells. Sol Energy Mater Sol Cells 253:112229. https://doi.org/10.1016/j.solmat.2023.112229Get
Irwin MD, Buchholz DB, Hains AW, Chang RP, Marks TJ (2008) p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc Natl Acad Sci 105:2783–2787
Hussain AB, Khalid IA, Lazim HG (2016) Effect of nano particle sizes on the third-order optical non linearities and nanostructure of copolymer P3HT: PCBM thin film for organic photovoltaics. Mater Res Bull 76:422–430. https://doi.org/10.1016/j.materresbull.2016.01.005
Gunduz B, Yahia I, Yakuphanoglu F (2012) Electrical and photoconductivity properties of p-Si/P3HT/ Al and p-Si/P3HT: MEH-PPV/Al organic devices: comparison study. Microelectron Eng 98:41–57
Hussain AB, Hussain FH, Ajeel KI (2016) Nonlinear characterization of conducting polymer and electrical study for application as solar cells and its antibacterial activity. Optik 127:5301. https://doi.org/10.1016/j.ijleo.2016.03.030
Gaia MNJ, Priya D, Yoann B, Ivan PW, Thorsten T, Ziv H (2023) Improvements and gaps in the empirical expressions for the fill factor of modern industrial solar cells. Sol Energy Mater Sol Cells. 253: 112183. https://doi.org/10.1016/j.solmat.2023.112183
Senthilarasu S, Sathyamoorthy R, Lalitha S, Subbarayan A (2006) Electrical conduction properties of ZnPc/TiO2 thin films. Sol Energy Mater Sol Cells 90:783–797
Kadem B, Alfahed RKF, Ahmed SA, Hussain AB (2020) Morphological, structural, optical, and photovoltaic cell of copolymer P3HT: ICBA and P3HT:PCBM. Optik 204:164153. https://doi.org/10.1016/j.ijleo.2019.164153
Lazim HG, Ajeel KI, Badran HA (2015) The photovoltaic efficiency of the fabrication of copolymer P3HT: PCBM on different thickness nano-anatase titania as solar cell. Spectrochim. Acta Part A Mol Biomol Spectrosc 145:598–603. https://doi.org/10.1016/j.saa.2015.02.096
Garcia-Belmonte G, Boix PP, Bisquert J, Sessolo M, Bolink HJ (2010) Simultaneous determination of carrier lifetime and electron density-of-states in P3HT: PCBM organic solar cells under illumination by impedance spectroscopy. Sol Energy Mater Sol Cells 94:366–375. https://doi.org/10.1016/j.solmat.2009.10.015
