Electric properties of monophase polycrystalline sinters SiC, B4C, TiC and their composites as non-inductive volume resistors
Tóm tắt
Monophase polycrystalline SiC, B4C, TiC and their SiC-TiC, SiC-B4C composite sinters with a theoretical density of 97% are characterized by good mechanical and thermal durability as well as a wide range of electrical conductivity values. SiC, which has semiconductor conductivity and negative TCR, was combined with TiC, which has metallic conductivity and positive TCR. Produced in this way resistive elements, within a temperature range from 293 K to 348 K, exhibit a TCR close to zero, and an impedance independent of frequency within a range from 100 Hz to 1 MHz. The combination SiC with 40 wt% of B4C has been produced resistive elements, which are resistive to oxidation. This combination has also completly resistive character, within a range of 100 Hz to 1 MHz. Most of the investigated materials are suitable for high temperature, noninductive volume resistors.
Tài liệu tham khảo
F. Thevenot, Boron carbide – a comprehensive review. J. Europ. Ceram Soc. 6, 205–225 (1990)
J. Lankford, Comparative study of the temperature of hardness and compressive strength in ceramics. J. Mat. Sci. 18, 1666–1674 (1983)
L. Stobierski, Carbide ceramics. Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH, 2005 (in Polish)
L. Stobierski, Węglik krzemu: budowa własności i otrzymywanie. Ceramika 48, PAN, Kraków (1996), 80, 92 (in Polish)
L. Jaworska, L. Stobierski, A. Twardowska, D. Królicka, Preparation of materials based on Ti–Si–C system using high temperature–high pressure method. J. Mater. Process. Technol. 162–163, 184–189 (2005)
J. Lis, R. Pampuch, J. Stobierski, Preparation and Properties of New Structural Ceramics in the Ti-Si-C System. Proc. Int. Symp. of Advanced Materials for Structural and Tribological Application (Vancouver, Canada, 1995), Aug. 21-23
Y. Tkachenko, V. Britun, E. Prilutskii, D. Yurchenko, G. Bovkun, Structure and properties of B4C - SiC composites. Powder Metall. Met. Ceram. 44(3–4), 196–201 (2005)
The Circuits and Filters. Handbook, 2nd edn, 10. 1. Resistor, ed. by W.-K. Chen (CRS Press and IEEE Press, Chicago, USA, 2001), p. 274
W.F. Knippenberg, Growth phenomena in silicon carbide. Phil. Res. Rept. 18, 161 (1963)
W.J. Choyke, L. Patrick, Exciton radiation and phonon spectrum of 6H SiC. Phys. Rev. 2(6), 127 (1962)
G.A. Slack, R.I. Scace, Nitrogen incorporation in SiC. J. Chem. Phys. 42, 805 (1965)
M. Ikeda, H. Matsunami, T. Tanaka, Site effect on the impurity levels in 4H, 6H, and 15 R SiC. Phys. Rev. B 22, 2842–2854 (1980)
G. Pensyl, W.J. Choyke, Electrical and optical characterisation of SiC. Phys. B 185, 264 (1993)
Y. Tajima, W.D. Kingery, Solid Solubility of aluminium and boron in silicon carbide. J. Am. Ceram. Soc. 65, C 27–C 29 (1982)
A. Suzuki, H. Matsunami, T. Tanaka, J. Electrochem. Soc. 124, 241 (1977)
M.H. Anikin, A.A. Lebedev, A.L. Syrkin, A.V. Suvorov, Sov. Phys. Semicond. 19, 69 (1985)
V.S. Ballandovich, G.N. Violina, Yu. M. Tairow, Fiz. Tekhn. Poluprov. 15(1981) 498/503; Soviet Phys. – Semicond. 15(1981) 283/6
Yu. A. Vodakov, N. Zhumaev, B. P. Zverev, et al., Fiz. Tekh. Poluprovodn. (Leningrad) 11, 373 (1977); Soviet Phys. – Semicond. 11, 214 (1977)
C. S. Brooks, M. A. DeCrescente, D. A. Scola, The wetting of silicon carbide surfaces. J. Colloid Interface Sci. 27 (1968), p.773-788
D. Emin, Electronic Transport in Boron Carbides. Boron–rich solids, AIP Conf. Proc. No. 140, 189 (1986)
D. Emin, Structure and single-phase regime in boron carbides. Phys. Rev. B 38, 6041–6055 (1988)
I. Cadoff, J.P. Nielsen, Titanium-carbon phase diagram. J. Metals 5, 1564 (1953)
T.G. Utkina, J.C. Karimow, Anomalies of electrical properties of disordered titanium carbide. Solid State Phys. 28(10) (1986)