Electric potential and carrier distribution in a piezoelectric semiconductor nanowire in time-harmonic bending vibration

Nano Energy - Tập 43 - Trang 22-28 - 2018
Xiaoyun Dai1, Feng Zhu1, Zhenghua Qian1, Jiashi Yang2
1State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588-0526, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Wang, 2003, Nanobelts, nanowires, and nanodiskettes of semiconducting oxides-from materials to nanodevices, Adv. Mater., 15, 432, 10.1002/adma.200390100

Wang, 2010, Piezopotential gated nanowire devices: piezotronics and piezo-phototronics, Nano Today, 5, 540, 10.1016/j.nantod.2010.10.008

Kumar, 2011, Recent Advances in Power Generation through Piezoelectric Nanogenerators, J. Mater. Chem., 21, 18946, 10.1039/c1jm13066h

Gao, 2009, Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire, Nano Lett., 9, 1103, 10.1021/nl803547f

Hu, 2010, Designing the electric transport characteristics of ZnO micro/nanowire devices by coupling piezoelectric and photoexcitation effects, ACS Nano, 4, 1234, 10.1021/nn901805g

Araneo, 2012, Piezo-semiconductive quasi-1D nanodevices with or without anti-symmetry, Adv. Mater., 24, 4719, 10.1002/adma.201104588

Ji, 2013, One-dimensional nano-interconnection formation, Small, 9, 3014, 10.1002/smll.201201318

Shen, 2010, A general approach for fabricating arc-shaped composite nanowire arrays by pulsed laser deposition, Adv. Funct. Mater., 20, 703, 10.1002/adfm.200901546

Chen, 2007, Photoelastic effect in ZnO nanorods, Nanotechnology, 18, 225705, 10.1088/0957-4484/18/22/225705

Yoo, 2009, Modulation doping in ZnO nanorods for electrical nanodevice application, Appl. Phys. Lett., 94, 223117, 10.1063/1.3148666

Xue, 2010, Probing the strain effect on near band edge emission of a curved ZnO nanowire via spatially resolved cathodoluminescence, Nanotechnology, 21, 215701, 10.1088/0957-4484/21/21/215701

Gao, 2007, Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices, Adv. Mater., 19, 67, 10.1002/adma.200601162

Choi, 2009, Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods, Adv. Mater., 21, 2185, 10.1002/adma.200803605

Romano, 2011, Piezoelectric potential in vertically aligned nanowires for high output nanogenerators, Nanotechnology, 22, 465401, 10.1088/0957-4484/22/46/465401

Asthana, 2014, Real time observation of mechanically triggered piezoelectric current in individual ZnO nanobelts, J. Mater. Chem. C, 2, 3995, 10.1039/C4TC00032C

Liao, 2014, Flexible piezoelectric nanogenerators based on a fiber/ZnO nanowires/paper hybrid structure for energy harvesting, Nano Res., 7, 917, 10.1007/s12274-014-0453-8

Wang, 2006, Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire, Nano Lett., 6, 2768, 10.1021/nl061802g

Buyukkose, 2014, High-frequency acoustic charge transport in GaAs nanowires, Nanotechnology, 25, 135204, 10.1088/0957-4484/25/13/135204

Yu, 2010, Nanorod based Shottky contact gas sensors in reversed bias condition, Nanotechnology, 21, 265502, 10.1088/0957-4484/21/26/265502

Chen, 2012, Bending effects of ZnO nanorod metal-semiconductor-metal photodetectors on flexible polyimide substrate, Nanoscale Res. Lett., 7, 214, 10.1186/1556-276X-7-214

Wang, 2014, Effects of free carriers on piezoelectric nanogenerators and piezotronic devices made of GaN nanowire arrays, Small, 10, 4718, 10.1002/smll.201400768

Hutson, 1962, Elastic wave propagation in piezoelectric semiconductors, J. Appl. Phys., 33, 40, 10.1063/1.1728525

Auld, 1973, vol. I

Pierret, 1988

Wauer, 1997, Thickness vibrations of a piezo-semiconducting plate layer, Int. J. Eng. Sci., 35, 1387, 10.1016/S0020-7225(97)00060-8

Li, 2015, Effects of semiconduction on electromechanical energy conversion in piezoelectrics, Smart Mater. Struct., 24, 025021, 10.1088/0964-1726/24/2/025021

Gu, 2015, Shear-horizontal surface waves in a half-space of piezoelectric semiconductors, Philos. Mag. Lett., 95, 92, 10.1080/09500839.2015.1011249

Yang, 2006, Analysis of a circular piezoelectric semiconductor embedded in a piezoelectric semiconductor substrate, Arch. Appl. Mech., 76, 381, 10.1007/s00419-006-0035-7

Hu, 2007, A Mode III crack in a piezoelectric semiconductor of crystals with 6mm symmetry, Int. J. Solids Struct., 44, 10.1016/j.ijsolstr.2006.10.033

Sladek, 2014, Dynamic anti-plane crack analysis in functional graded piezoelectric semiconductor crystals, Comput. Model. Eng. Sci., 99, 273

Sladek, 2014, Fracture analysis in piezoelectric semiconductors under a thermal load, Eng. Fract. Mech., 126, 27, 10.1016/j.engfracmech.2014.05.011

Zhao, 2016, Extended displacement discontinuity method for analysis of cracks in 2D piezoelectric semiconductors, Int. J. Solids Struct., 94–95, 50, 10.1016/j.ijsolstr.2016.05.009

Fan, 2016, Piezoelectric-conductor iterative method for analysis of cracks in piezoelectric semiconductors via the finite element method, Eng. Fract. Mech., 165, 183, 10.1016/j.engfracmech.2016.02.057

Zhao, 2016, Singularity analysis of planar cracks in three-dimensional piezoelectric semiconductors via extended displacement discontinuity boundary integral equation method, Eng. Anal. Bound. Elem., 67, 115, 10.1016/j.enganabound.2016.03.005

Zhang, 2016, Carrier distribution and electromechanical fields in a free piezoelectric semiconductor rod, J. Zhejiang Univ.-Sci. A, 17, 37, 10.1631/jzus.A1500213

Zhang, 2016, Propagation of extensional waves in a piezoelectric semiconductor rod, AIP Adv., 6, 045301, 10.1063/1.4945752

Zhang, 2017, An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an axial force, Smart Mater. Struct., 26, 025030, 10.1088/1361-665X/aa542e

Zhang, 2017, Electromechanical fields in piezoelectric semiconductor nanofibers under an electromechanical fields in piezoelectric semiconductor nanofibers under an axial forceaxial force, MRS Adv., 2, 3421, 10.1557/adv.2017.301

Gao, 2007, Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotrionics, Nano Lett., 7, 2499, 10.1021/nl071310j

Fan, 2017, Exact solutions to the electromechanical quantities inside a statically-bent circular ZnO nanowire by taking into account both the piezoelectric property and the semiconducting performance: Part I--Linearized analysis, Nano Energy, 40, 82, 10.1016/j.nanoen.2017.07.049

Chunli Zhang, Xiaoyuan Wang, Weiqiu Chen, Jiashi Yang, Bending of a cantilever piezoelectric semiconductor fiber under an end force, in preparation, 2017.

Gao, 2009, Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire, Nano Lett., 9, 1103, 10.1021/nl803547f