Electric field induced degradation in sky-blue perovskite light-emitting diodes

Materials Today Energy - Tập 29 - Trang 101139 - 2022
Shuang-Qiao Sun1, Cheng Liu1, Min Zhu1, Yan-Lin Xu1, Wei He1, Dan-Dan Feng1, Chen-Chao Huang1, Qi Sun1, Yue-Min Xie1, You-Yong Li1,2, Man-Keung Fung1,2
1Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, PR China
2Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Taipa, 999078, Macau, China

Tài liệu tham khảo

Xie, 2022, Homogeneous grain boundary passivation in wide-bandgap perovskite films enables fabrication of monolithic perovskite/organic tandem solar cells with over 21% efficiency, Adv. Funct. Mater., 32, 2112126, 10.1002/adfm.202112126 Zhang, 2021, Chlorine distribution management for spectrally stable and efficient perovskite blue light-emitting diodes, Nano Energy, 79, 105486, 10.1016/j.nanoen.2020.105486 Zhang, 2016, Enhancing the brightness of cesium lead halide perovskite nanocrystal based green light-emitting devices through the interface engineering with perfluorinated ionomer, Nano Lett., 16, 1415, 10.1021/acs.nanolett.5b04959 Yuan, 2020, A cocktail of multiple cations in inorganic halide perovskite toward efficient and highly stable blue light-emitting diodes, ACS Energy Lett., 5, 1062, 10.1021/acsenergylett.9b02562 Leyden, 2019, Distributed feedback lasers and light-emitting diodes using 1-naphthylmethylamnonium low-dimensional perovskite, ACS Photonics, 6, 460, 10.1021/acsphotonics.8b01413 Sun, 2019, Influence of a lecithin additive on the performance of all-inorganic perovskite light-emitting diodes, J. Mater. Chem. C, 7, 2905, 10.1039/C8TC06365F Lin, 2018, Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent, Nature, 562, 245, 10.1038/s41586-018-0575-3 Chiba, 2018, Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices, Nat. Photonics, 12, 681, 10.1038/s41566-018-0260-y Wang, 2022, In situ inorganic ligand replenishment enables bandgap stability in mixed-halide perovskite quantum dot solids, Adv. Mater., 34, 2200854, 10.1002/adma.202200854 Zhao, 2018, High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes, Nat. Photon., 12, 783, 10.1038/s41566-018-0283-4 Gong, 2016, Highly efficient quantum dot near-infrared light-emitting diodes, Nat. Photon., 10, 253, 10.1038/nphoton.2016.11 Chu, 2020, Large cation ethylammonium incorporated perovskite for efficient and spectra stable blue light-emitting diodes, Nat. Commun., 11, 4165, 10.1038/s41467-020-17943-6 Liu, 2022, Wide-bandgap perovskite quantum dots in perovskite matrix for sky-blue light-emitting diodes, J. Am. Chem. Soc., 144, 4009, 10.1021/jacs.1c12556 Pang, 2020, Rearranging low-dimensional phase distribution of quasi-2D perovskites for efficient sky-blue perovskite light-emitting diodes, ACS Nano, 14, 11420, 10.1021/acsnano.0c03765 Wang, 2020, Chelating-agent-assisted control of CsPbBr3 quantum well growth enables stable blue perovskite emitters, Nat. Commun., 11, 3674, 10.1038/s41467-020-17482-0 Wang, 2020, Dimension control of in situ fabricated CsPbClBr2 nanocrystal films toward efficient blue light-emitting diodes, Nat. Commun., 11, 6428, 10.1038/s41467-020-20163-7 Liu, 2019, Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures, Nat. Photon., 13, 760, 10.1038/s41566-019-0505-4 Xing, 2018, Color-stable highly luminescent sky-blue perovskite light-emitting diodes, Nat. Commun., 9, 354, 10.1038/s41467-018-05909-8 Quintero-Bermudez, 2018, Compositional and orientational control in metal halide perovskites of reduced dimensionality, Nat. Mater., 17, 900, 10.1038/s41563-018-0154-x Vashishtha, 2018, High efficiency blue and green light-emitting diodes using ruddlesden–popper inorganic mixed halide perovskites with butylammonium interlayers, Chem. Mater., 31, 83, 10.1021/acs.chemmater.8b02999 Ma, 2020, Chloride insertion-immobilization enables bright, narrowband, and stable blue-emitting perovskite diodes, J. Am. Chem. Soc., 142, 5126, 10.1021/jacs.9b12323 Li, 2019, Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%, Nat. Commun., 10, 1027, 10.1038/s41467-019-09011-5 Wang, 2019, Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement, Nat. Commun., 10, 5633, 10.1038/s41467-019-13580-w Zhao, 2020, Thermal management enables bright and stable perovskite light-emitting diodes, Adv. Mater., 32, 2000752, 10.1002/adma.202000752 Xu, 2018, Electric bias induced degradation in organic-inorganic hybrid perovskite light-emitting diodes, Sci. Rep., 8, 15799, 10.1038/s41598-018-34034-1 Li, 2016, Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method, Adv. Mater., 28, 3528, 10.1002/adma.201600064 Hoke, 2015, Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics, Chem. Sci., 6, 613, 10.1039/C4SC03141E Wang, 2021, All-Inorganic quantum-dot LEDs based on a phase-stabilized α-CsPbI3 perovskite, Angew. Chem. Int. Ed., 60, 16164, 10.1002/anie.202104812 Cho, 2021, Photoinduced halide segregation in ruddlesden–popper 2D mixed halide perovskite films, Adv. Mater., 33, 2105585, 10.1002/adma.202105585 Jiang, 2019, Surface passivation of perovskite film for efficient solar cells, Nat. Photon., 13, 460, 10.1038/s41566-019-0398-2 Li, 2017, Direct evidence of ion diffusion for the silver-electrode-induced thermal degradation of inverted perovskite solar cells, Adv. Energy Mater., 7 Lee, 2019, Direct evidence of ion-migration-induced degradation of ultrabright perovskite light-emitting diodes, ACS Appl. Mater. Interfaces, 11, 11667, 10.1021/acsami.8b22217 Teng, 2021, Degradation and self-repairing in perovskite light-emitting diodes, Matter, 4, 3710, 10.1016/j.matt.2021.09.007 Chen, 2015, The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells, Nat. Commun., 6, 726 Zhang, 2019, Self-seeding growth for perovskite solar cells with enhanced stability, Joule, 3, 1452, 10.1016/j.joule.2019.03.023 Xiao, 2020, Inhomogeneous doping of perovskite materials by dopants from hole-transport layer, Matter, 2, 261, 10.1016/j.matt.2019.10.005 Chen, 2022, Substantial improvement of operating stability by strengthening metal-halogen bonds in halide perovskites, Adv. Funct. Mater., 32, 2112129, 10.1002/adfm.202112129 Pan, 2017, Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit, Nat. Photon., 11, 726, 10.1038/s41566-017-0012-4 Haruyama, 2015, First-principles study of ion diffusion in perovskite solar cell sensitizers, J. Am. Chem. Soc., 137, 10048, 10.1021/jacs.5b03615 Sundell, 2007, Density-functional calculations of prefactors and activation energies for H diffusion in BaZrO3, Phys. Rev. B, 76, 94301, 10.1103/PhysRevB.76.094301