Electric Current Activation of Sintering: A Review of the Pulsed Electric Current Sintering Process

Journal of the American Ceramic Society - Tập 94 Số 1 - Trang 1-19 - 2011
Zuhair A. Munir1, Dat V. Quach1, Manshi Ohyanagi2
1Department of Chemical Engineering and Materials Science, University of California, Davis, California, 95616
2Department of Materials Chemistry, Ryukoku University, Ohtsu 520-2134, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Burke, 1985, A History of the Development of a Science of Sintering, Ceram. Civilizat., 1, 315

Pero-Sanz Alroz, 1999, Melting and Sintering Platinum in the 18th Century, The Secret of the Spanish, 51, 9

Munir, 2006, The Effect of Electric Field and Pressure on the Synthesis and Consolidation of Materials, A Review of the Spark Plasma Sintering Method, 41, 763

Grasso, 2009, Electric Current Activated/Assisted Sintering (ECAS), A Review of Patents 1906-2008, 10, 053001

Omori, 2000, Sintering, Consolidation, Reaction and Crystal Growth by the Spark Plasma System (SPS), Mater. Sci. Eng., A287, 183, 10.1016/S0921-5093(00)00773-5

Nygren, 2004, Spark Plasma Sintering, Possibilities and Limitations, 264-268, 719

Hungria, 2009, Spark Plasma Sintering as a Useful Technique to the Nanostructuration of Piezo-ferroelectric Materials, Adv. Eng. Mater., 11, 615, 10.1002/adem.200900052

Orru, 2009, Consolidation/Synthesis of Materials by Electric Current Activated/Assisted Sintering, Mater. Sci. Eng. Reports, R63, 127, 10.1016/j.mser.2008.09.003

Garay, 2010, Current-activated, Pressure-assisted Densification of Materials, Annu. Rev. Mater. Res., 40, 445, 10.1146/annurev-matsci-070909-104433

Gubicza, 2009, Microstructure and Mechanical Behavior of Ultrafine-grained Ni Processed by Different Powder Metallurgy Methods, J. Mater. Res., 24, 217, 10.1557/JMR.2009.0010

Ritasalo, 2010, Spark Plasma Sintering of Submicron-sized Cu-powder - Influence of Processing Parameters and Powder Oxidization on Microstructure and Mechanical Properties, Mater. Sci. Eng. A, A527, 2733, 10.1016/j.msea.2010.01.008

Mizuguchi, 2010, Transmission Electron Microscopy Characterization of Spark Plasma Sintered ZrB2 Ceramic, Ceram. Int., 36, 943, 10.1016/j.ceramint.2009.10.025

Kanamori, 2009, Spark Plasma Sintering of Sol-gel Derived Amorphous ZrW2O8, J. Am. Ceram. Soc., 92, 32, 10.1111/j.1551-2916.2008.02840.x

Guo, 2010, Spark Plasma Sintering of Zirconium Diborides, J. Am. Ceram. Soc., 91, 2848, 10.1111/j.1551-2916.2008.02587.x

Musa, 2009, Energy Efficiency During Conventional and Novel Sintering Processes, The Case of Ti-Al2O3-TiC Composites, 17, 877

Eriksson, 2010, Low Temperature Consolidated Lead-free Ferroelectric Niobate Ceramics with Improved Electrical Properties, J. Mater. Res., 25, 240, 10.1557/JMR.2010.0034

Le Gallet, 2010, Spark Plasma Sintering of Iodine-bearing Apatite, J. Nuclear Mater., 400, 251, 10.1016/j.jnucmat.2010.03.011

Campyao, 2009, Spark Plasma Sintering of Lead Phosphovanadate Pb3(VO4)1.6(PO4)0.4, J. Eur. Ceram. Soc., 29, 1477, 10.1016/j.jeurceramsoc.2008.09.003

Kan, 2005, Spark Plasma Sintering of Bismuth Titanate Ceramics, J. Am. Ceram. Soc., 88, 1631, 10.1111/j.1551-2916.2005.00256.x

Drouet, 2006, Bioceramics, Spark Plasma Sintering (SPS) of Calcium Phosphates, 49, 45

Bassano, 2009, Particle Size and Morphology Control of Perovskite Oxide Nanopowders for Nanostructured Materials, Integrated Ferroelectr., 109, 1, 10.1080/10584580903432395

Okamotoa, 2005, Phase Transition and Electrical Conductivity of Scandia-stabilized Zirconia Prepared by Spark Plasma Sintering Process, Solid State Ionics, 176, 675, 10.1016/j.ssi.2004.10.022

Nygren, 2004, Novel Assemblies via Spark Plasma Sintering, Silicates Ind., 69, 211

Basu, 2004, Development of Nanocrystalline Wear-resistant Y-TZP Ceramics, J. Am. Ceram. Soc., 87, 1771, 10.1111/j.1551-2916.2004.01771.x

Yue, 2004, Chemical Stability and Microstructure of Nd-Fe-B Magnet Prepared by Spark Plasma Sintering, J. Magn. Magn. Mater., 271, 364, 10.1016/j.jmmm.2003.10.002

Su, 2004, Optical Properties of SPS-ed Y- and (Dy,Y)-α-Sialon Ceramics, J. Mater. Sci., 39, 6257, 10.1023/B:JMSC.0000043595.90720.23

Han, 2004, Eutectic Al2O3-GdAlO3 Composite Consolidated by Combined Rapid Quenching and Spark Plasma Sintering Technique, Br. Ceram. Trans., 103, 219, 10.1179/096797804X4231

Kwon, 2004, Microstructure Changes in TiB2-Cu Nanocomposite Under Sintering, J. Mater. Sci., 39, 5325, 10.1023/B:JMSC.0000039238.31362.93

Zhou, 2004, Preparation and Properties of Lead Zirconate Stannate Titanate Sintered by Spark Plasma Sintering, J. Am. Ceram. Soc., 87, 606, 10.1111/j.1551-2916.2004.00606.x

Risbud, 1994, Clearn Grain Boundaries in Aluminum Nitride Ceramics Densified Without Additives by a Plasma-Activated Sintering Process, Philos. Mag., B 69, 525, 10.1080/01418639408240126

Shen, 2003, Formidable Increase in the Superplasticity of Ceramics in the Presence of an Electric Field, Adv. Mater., 15, 1006, 10.1002/adma.200304863

Chen, 2004, Overcoming the Effect of Contaminant in Solid Oxide Fuel Cell (SOFC) Electrolyte, Spark Plasma Sintering (SPS) of 0.5 wt.% Silica-doped Yttria-stabilized Zirconia (YSZ), A374, 64

Takeuchi, 1999, Dielectric Properties of Spark-plasma-sintered BaTiO3, J. Mater. Sci., 34, 917, 10.1023/A:1004506905278

Yue, 2003, New Kind of NdFeB Magnet Prepared by Spark Plasma Sintering, IEEE Trans. Magn., 39, 3551

Pei, 2009, Improving Hydrogen Storage Properties of Laves Phase Related BCC Solid Solution Alloy by SPS Preparation Method, Intern. J. Hydrogen Storage, 34, 8597, 10.1016/j.ijhydene.2009.08.038

Zhao, 2009, Synthesis of Nanocomposites with Improved Thermoelectric Properties, J. Electron. Mater., 38, 1017, 10.1007/s11664-009-0698-2

Noudem, 2009, Thermoelectric Ca3Co4O9 Ceramics Consolidated by Spark Plasma Sintering, J. Electroceram., 22, 91, 10.1007/s10832-008-9421-6

Amezawa, 2005, Electrical and Mechanical Properties of Sr-doped LaPO4 Prepared by Spark Plasma Sintering, J. Electrochem. Soc., 152, A1060, 10.1149/1.1897354

Morita, 2009, Spark-Plasma-Sintering Condition Optimization for Producing Transparent MgAl2O4 Spinel Polycrystal, J. Am. Ceram. Soc., 92, 1208, 10.1111/j.1551-2916.2009.03074.x

Mula, 2010, Structure and Mechanical Properties of Al-Ni-Ti Amorphous Powder Consolidated by Pressure-less, Pressure-assisted and Spark Plasma Sintering, Mater. Sci. Eng., A527, 3757, 10.1016/j.msea.2010.03.068

Holland, 2004, Crystallization of Metallic Glasses Under the Influence of High-density d.c. Current, J. Appl. Phys., 95, 2896, 10.1063/1.1642280

Wang, 2009, Formation of a Unique Glass by Spark Plasma Sintering of a Zeolite, J. Mater. Res., 24, 3241, 10.1557/jmr.2009.0385

Ohyanagi, 2004, Consolidation of Nanostructured β-SiC with Disorder-Order Transformation, Scr. Mater., 50, 111, 10.1016/j.scriptamat.2003.09.027

Toyofuku, 2010, Consolidation of Carbon with the Amorphous-graphite Transformation by SPS, Ceram. Trans., 212, 31, 10.1002/9780470880456.ch3

Orru, 2001, Synthesis of Dense Nanometric MoSi2 Through Mechanical and Field Activation, J. Mater. Res., 16, 1439, 10.1557/JMR.2001.0201

Bernard, 2001, One-step Synthesis and Consolidation of Nanophase Iron Aluminide, J. Am. Ceram. Soc., 84, 910, 10.1111/j.1151-2916.2001.tb00767.x

Lee, 2001, Synthesis of Dense TiB2-TiN Nanocrystalline Composites Through Mechanical and Field Activation, J. Am. Ceram. Soc., 84, 1209, 10.1111/j.1151-2916.2001.tb00818.x

Woolman, 2003, Incorporating Mg into the Si Sub-Lattice of Molybdenum Disilicide, Scr. Mater., 48, 819, 10.1016/S1359-6462(02)00516-X

Waghmare, 1999, Microalloying for Ductility in Molybdenum Disilicide, Mater. Sci. Eng., A261, 147, 10.1016/S0921-5093(98)01060-0

Tokita, 2005, Development of Square-Shaped Large-Size WC/Co/Ni System FGM Fabricated by Spark Plasma Sintering (SPS) Method and its Industrial Applications, Mater. Sci. Forum, 492-3, 711, 10.4028/www.scientific.net/MSF.492-493.711

Heian, 2004, Synthesis and Characterization of Nb5Si3/Nb Functionally Graded Composites, Mater. Sci. Eng., A368, 168, 10.1016/j.msea.2003.10.307

Meng, 2009, Synthesis and Characterization of TiB2-Ni-Ni3Al-CrNi Alloy Graded Material by Field-activated Combustion, J. Alloys Compd., 476, 889, 10.1016/j.jallcom.2008.09.162

Sui, 2008, Joining CoSb3 to Metal Surface of FGM Electrode for Thermoelectric Modules by SPS, Key Eng. Mater., 368-72, 1858, 10.4028/www.scientific.net/KEM.368-372.1858

Wang, 2006, Titanium Mesh/rod Joined by Pulse Electric Current Sintering, Effect of Heating Rate, 47, 2348

Nakamura, 2005, Bonding Characteristics of Various Metals by DC Pulse Resistance Heat Pressure Welding, Mater. Trans., 46, 292, 10.2320/matertrans.46.292

Anselmi-Tamburini, 2005, Fundamental Investigations on the Spark Plasma Sintering/synthesis Process III. Current Effect on Reactivity, Mater. Sci. Eng., A407, 24, 10.1016/j.msea.2005.06.066

Tokita, 2006, Development of Advanced Spark Plasma Sintering (SPS) Systems and its Industrial Applications, Ceram. Trans., 194, 51, 10.1002/9780470082751.ch4

Misawa, 2010, Influence of Internal Pulsed Current on the Sintering Behavior of Pulsed Current Sintering Process, Mater. Sci. Forum, 638-42, 2109, 10.4028/www.scientific.net/MSF.638-642.2109

Hulbert, 2008, The Absence of Plasma in Spark Plasma Sintering, J. Appl. Phys., 104, 033305, 10.1063/1.2963701

Misawa, 2009, Observation of Internal Pulsed Current Flow Through the ZnO Specimen in the Spark Plasma Sintering Method, J. Mater. Sci., 44, 1641, 10.1007/s10853-008-2906-5

Nanko, 1999, Neck Growth on Initial Stage of Pulse Current Pressure Sintering for Coarse Atomized Powder Made of Cast-Iron, J. Jpn. Inst. Metals, 63, 917, 10.2320/jinstmet1952.63.7_917

Nanko, 2002, Densification of Ni-20Cr Alloy Coarse-Powder by Pulse Current Pressure Sintering, J. Jpn. Inst. Metals, 66, 87, 10.2320/jinstmet1952.66.2_87

Xie, 2003, Frequency Effect on Pulse Electric Current Sintering Process of Pure Aluminum Powder, Mater. Sci. Eng., A359, 384, 10.1016/S0921-5093(03)00393-9

Dang, 2009, Effects of Pulsed Current Waveforms on Sample Temperature and Sintering Behavior in PECS of Alumina, J. Jpn. Soc. Powder Metall., 56, 780, 10.2497/jjspm.56.780

Chen, 2005, Fundamental Investigations on the Spark Plasma Sintering/Synthesis Process, Mater. Sci. Eng., A394, 132, 10.1016/j.msea.2004.11.020

Anselmi-Tamburini, 2005, Fundamental Investigations on the Spark Plasma Sintering/Synthesis Process II. Modeling of Current and Temperature Distributions, Mater. Sci. Eng., A394, 139, 10.1016/j.msea.2004.11.019

U. Anselmi-Tamburini Z. A. Munir J. E. Garay Preparation of Dense Nanostructured Oxide Ceramics with Fine Crystal Size by High-Pressure Spark Plasma Sintering

Wang, 2006, Preparation of Dense Nanostructured Functional Oxide Materials with Fine Crystallite Size by Field Activation Sintering, Mater. Trans., 47, 2348, 10.2320/matertrans.47.2348

Orchard, 2005, Electromigration Effects on Compound Growth at Interfaces, Appl. Phys. Lett., 86, 231906, 10.1063/1.1935772

Asoka-Kumar, 1996, Detection of Current-Induced Vacancies in Thin Aluminum-copper Lines Using Positrons, Appl. Phys. Lett., 68, 406, 10.1063/1.116700

Garay, 2004, Electric Current Enhanced Defect Mobility in Ni3Ti Intermetallics, Appl. Phys. Lett., 85, 573, 10.1063/1.1774268

Bertolino, 2001, Electromigration Effects in Al-Au Multilayers, Scr. Mater., 44, 737, 10.1016/S1359-6462(00)00669-2

Bertolino, 2002, High-flux Current Effects in Interfacial Reactions in Au-Al Multilayers, Philos. Mag. B, 82, 969, 10.1080/13642810110117185

Garay, 2003, Enhanced Growth of Intermetallic Phases in the Ni-Ti System by Current Effects, Acta Mater., 51, 4487, 10.1016/S1359-6454(03)00284-2

Zhao, 2007, Directional Electromigration-Enhanced Interdiffusion in the Cu-Ni System, J. Appl. Phys., 102, 114902, 10.1063/1.2809444

Zhao, 2007, Kinetics of Current-enhanced Dissolution of Nickel in Liquid Aluminum, Acta Mater., 55, 5592, 10.1016/j.actamat.2007.06.016

Zhao, 2008, Microstructural Evolution During the Dissolution of Nickel in Liquid Aluminum Under the Influence of an Electric Field, Acta Mater., 56, 1840, 10.1016/j.actamat.2007.12.024

Conrad, 2010, Influence of an Applied dc Electric Field on the Plastic Deformation Kinetics of Oxide Ceramics, Philos. Mag., 90, 1141, 10.1080/14786430903304137

Jung, 2007, Retardation of Grain Growth in Electrodeposited Cu by an Electric Field, J. Mater. Sci., 42, 3994, 10.1007/s10853-006-0177-6

Starnes, 2008, Grain Size Distribution in Ultrafine-grained Yttria-stabilized Zirconia Deformed Without and With an Electric Field, Scr. Mater., 59, 1115, 10.1016/j.scriptamat.2008.07.025

Ghosh, 2009, A Huge Effect of Weak dc Electrical Fields on Grain Growth in Zirconia, J. Am. Ceram. Soc., 92, 1856, 10.1111/j.1551-2916.2009.03102.x

Chen, 2008, Making Nanostructured Ceramics from Micrometer-sized Powders via Grain Refinement During SPS Sintering, J. Am. Ceram. Soc., 91, 2475, 10.1111/j.1551-2916.2008.02490.x

Nagae, 2002, Effects of Pulse Current on an Aluminum Powder Oxide Layer During Pulse Current Pressure Sintering, Mater. Trans., 43, 1390, 10.2320/matertrans.43.1390

Mussi, 2009, Inversion Defects in MgAl2O4 Elaborated by Pressureless Sintering, Pressureless Sintering Plus Hot Isostatic Pressing, and Spark Plasma Sintering, Scr. Mater., 61, 516, 10.1016/j.scriptamat.2009.05.011

Nuns, 2009, Grain-Boundary Characterization in a Nonstoichiometric Fine-Grained Magnesium Aluminate Spinel, Effects of Defect Segregation at the Space-charge Layers, 92, 870

Bataille, 2008, Solute and Defect Segregation at the Space Charge Layers of Fe-Doped Fine-Grained Al2O3, Effect on the Creep Rate, 28, 1129

Kondo, 2008, Effect of Pulsed dc Current on Atomic Diffusion of Nb-C Diffusion Couple, J. Mater. Sci., 43, 6400, 10.1007/s10853-008-2758-z

Kondo, 2008, Enhanced Growth of Mo2C Formed in Mo-C Diffusion Couple by Pulsed dc Current, J. Jpn. Soc. Powder Metall., 55, 643, 10.2497/jjspm.55.643

Kondo, 2008, Influence of Pulsed dc Current and Electric Field on Growth of Carbide Ceramics During Spark Plasma Sintering, J. Ceram. Soc. Jpn., 116, 1187, 10.2109/jcersj2.116.1187

Frei, 2007, Current Effects on Neck Growth in the Sintering of Copper Spheres to Copper Plates by the Pulsed Electric Current Method, J. Appl. Phys., 101, 114914, 10.1063/1.2743885

Friedman, 2004, Modified Interfacial Reactions in Ag-Zn Multilayers Under the Influence of High d.c. Currents, Intermetallics, 12, 589, 10.1016/j.intermet.2004.02.005

Fu, 2006, Study on the Process Mechanism in Spark Plasma Sintering, Ceram. Trans., 194, 3

Burke, 1952, Recrystallization and Grain Growth, Progr. In Metal Phys., 3, 220, 10.1016/0502-8205(52)90009-9

Shearwood, 2007, Microelectronics: Design, Technology, and Packaging III, Proc. SPIE 6798

D. Y. Kim G. Gladel A. Accary Eu. Symp. Powder Metall 2

H. B. Hungtinton Diffusion in Solids A. S. Nowick J. J. Burton Academic Press 1975

German, 1996, Sintering Theory and Practice, 170

German, 1994, High Density Powder Processing Using Pressure-Assisted Sintering, Rev. Particular Mater., 2, 117

Jamnik, 1996, Space-Charge-Controlled Diffusional Creep, Volume Diffusion Case, 79, 193

Makino, 2007, Consolidation of Ultrafine Alumina Powders with SPS Method, J. Jpn. Soc. Powder Metall., 54, 219, 10.2497/jjspm.54.219

Guillard, 2007, Densification of SiC by SPS - Effects of Time, Temperature and Pressure, J. Eur. Ceram. Soc., 27, 2725, 10.1016/j.jeurceramsoc.2006.10.005

Chaim, 2008, Grain Size Control by Pressure Application Regime During Spark Plasma Sintering of Nd-YAG Nanopowders, J. Mater. Sci., 43, 5023, 10.1007/s10853-008-2742-7

Chaim, 2005, Densification Maps for Spark Plasma Sintering of Nanocrystalline MgO Ceramics, Mater. Sci. Eng., A407, 180, 10.1016/j.msea.2005.07.024

Anselmi-Tamburini, 2006, Fast Low-temperature Consolidation of Bulk Nanometric Ceramic Materials, Scripta Mater., 54, 823, 10.1016/j.scriptamat.2005.11.015

Quach, 2010, Pressure Effects and Grain Growth Kinetics in the Consolidation of Nanostructured Fully Stabilized Zirconia by Pulsed Electric Current Sintering, Acta Mater., 58, 5022, 10.1016/j.actamat.2010.05.038

Stokes, 1996, Fundamentals of Interfacial Engineering, 24

Onoda, 1986, Fractal Dimensions of Model Particle Packings Having Multiple Generations of Agglomerates, J. Am. Ceram. Soc., 69, C278, 10.1111/j.1151-2916.1986.tb07375.x

Van de Graaf, 1985, Microstructure and Sintering Kinetics of Highly Reactive ZrO2-Y2O3, J. Mater. Sci., 20, 1407, 10.1007/BF01026338

Grasso, 2009, Pressure Effects on Temperature Distribution During Spark Plasma Sintering with Graphite Sample, Mater. Trans., 50, 2111, 10.2320/matertrans.M2009148

Zavaliangos, 2004, Temperature Evolution During Field Activated Sintering, Mater. Sci. Eng., A379, 218, 10.1016/j.msea.2004.01.052

Vanmeensel, 2005, Modelling of the Temperature Distribution During Field Assisted Sintering, Acta Mater., 53, 4379, 10.1016/j.actamat.2005.05.042

Xu, 2009, Effect of Varying Displacement Rates on the Densification of Nanostructured Zirconia by Current Activation, J. Am. Ceram. Soc., 92, 1506, 10.1111/j.1551-2916.2009.03030.x

German, 1996, Sintering Theory and Practice, 482

Olevsky, 2007, Consolidation Enhancement in Spark-plasma Sintering, Impact of High Heating Rates, 102, 114913

Stanciu, 2001, Effects of Heating Rate on Densification and Grain Growth During Field-assisted Sintering of α-Al2O3 and MoSi2 Powders, Metall. Mater. Trans. A, 32A, 2633, 10.1007/s11661-001-0053-6

Shen, 2002, Spark Plasma Sintering of Alumina, J. Am. Ceram. Soc., 85, 1921, 10.1111/j.1151-2916.2002.tb00381.x

Zhou, 2003, Effects of Heating Rate and Particle Size on Pulse Electric Current Sintering of Alumina, Scr. Mater., 48, 1631, 10.1016/S1359-6462(03)00138-6

Anselmi-Tamburini, 2004, Spark Plasma Sintering and Characterization of Bulk Nanostructured Fully Stabilized Zirconia, Part I. Densification Studies, 19, 3255

Matsugi, 2003, A Case Study for Production of Perfectly Sintered Complex Compacts in Rapid Consolidation by Spark Sintering, Mater. Sci. Eng., A354, 234, 10.1016/S0921-5093(03)00012-1

McWilliams, 2008, Multi-Phenomena Simulation of Electric Field Assisted Sintering, J. Mater. Sci., 43, 5031, 10.1007/s10853-008-2744-5

Olevsky, 2009, Impact of Thermal Diffusion on Densification During SPS, J. Am. Ceram. Soc., 92, S122, 10.1111/j.1551-2916.2008.02705.x

Olevsky, 2006, Constitutive Modeling of Spark-plasma Sintering of Conductive Materials, Scr. Mater., 55, 1175, 10.1016/j.scriptamat.2006.07.009

Rathel, 2009, Temperature Distribution for Electrically Conductive and Non-conductive Materials During Field-Assisted Sintering (FAST), J. Eur. Ceram. Soc., 29, 1419, 10.1016/j.jeurceramsoc.2008.09.015

Tiwari, 2009, Simulations of Thermal and Electric Field Evolution During Spark Plasma Sintering, Ceram. Int., 35, 699, 10.1016/j.ceramint.2008.02.013

Cincotti, 2007, Modeling of SPS Apparatus, Temperature, Current and Strain Distribution with no Powders, 53, 703

Dobedoe, 2005, Spark Plasma Sintering of Ceramics, Understanding Temperature Distribution Enables More Realistic Comparison with Conventional Processing, 104, 110

Chennoufi, 2009, Temperature, Current, and Heat Loss Distributions in Reduced Electrothermal Loss Spark Plasma Sintering, Metall. Mater. Trans. A, 40A, 2401, 10.1007/s11661-009-9934-x

Liu, 2008, Temperature Distribution and Neck Formation of WC-Co Combined Particles During Spark Plasma Sintering, Mater. Sci. Eng., A488, 1, 10.1016/j.msea.2008.01.048

Maizza, 2009, Moving Finite-element Mesh Model for Aiding Spark Plasma Sintering in Current Control Mode of Pure Ultrafine WC Powder, J. Mater. Sci., 44, 1219, 10.1007/s10853-008-3179-8

Wang, 2007, Finite Element Modeling of Electric Current-activated Sintering, The Effect of Coupled Electrical Potential, Temperature and Stress, 55, 3611

Vanmeensel, 2007, Field Assisted Sintering of Electro-Conductive ZrO2-based Composites, J. Eur. Ceram. Soc., 27, 979, 10.1016/j.jeurceramsoc.2006.04.142

Vanmeensel, 2007, The Influence of Percolation During Pulsed Electric Current Sintering of ZrO2-TiN Powder Compacts with Varying TiN Content, Acta Mater., 55, 1801, 10.1016/j.actamat.2006.10.042

Grasso, 2009, Pressure Effect on the Homogeneity of Spark Plasma-Sintered Tungsten Carbide Powder, J. Am. Ceram. Soc., 92, 2418, 10.1111/j.1551-2916.2009.03211.x

Apetz, 2003, Transparent Alumina, A Light-scattering Model, 86, 480

Anselmi-Tamburini, 2007, Transparent Nanometric Cubic and Tetragonal Zirconia Obtained by High-pressure Pulsed Electric Current Sintering, Adv. Funct. Mater., 17, 3267, 10.1002/adfm.200600959

Kim, 2009, Microstructure and Optical Properties of Transparent Alumina, Acta Mater., 57, 1319, 10.1016/j.actamat.2008.11.010

Xiong, 2006, Fabrication of Transparent AlN Ceramics, J. Mater. Sci., 41, 2537, 10.1007/s10853-006-5314-8

Jiang, 2008, Optically Transparent Polycrystalline Al2O3 Produced by Spark Plasma Sintering, J. Am. Ceram. Soc., 91, 151, 10.1111/j.1551-2916.2007.02086.x

Zhang, 2009, Transparent Mullite Ceramic from Single-Phase Gel by Spark Plasma Sintering, J. Eur. Ceram. Soc., 29, 2705, 10.1016/j.jeurceramsoc.2009.04.012

Chaim, 2004, Transparent Nanocrystalline MgO by Rapid and Low-Temperature Spark Plasma Sintering, J. Mater. Res., 19, 2527, 10.1557/JMR.2004.0334

Morita, 2009, Fabrication of High-strength Transparent MgAl2O4 Spinel Polycrystals by Optimizing Spark-Plasma-Sintering Conditions, J. Mater. Res., 24, 2863, 10.1557/jmr.2009.0335

Chaim, 2010, Optically Transparent Ceramics by Spark Plasma Sintering of Oxide Nanoparticles, Scripta Mater., 63, 211, 10.1016/j.scriptamat.2010.03.056

Chaim, 2007, Transparent Yttrium Aluminum Garnet (YAG) Ceramics by Spark Plasma Sintering, J. Eur. Ceram. Soc., 27, 3331, 10.1016/j.jeurceramsoc.2007.02.193

Alaniz, 2009, Optical Properties of Transparent Nanocrystalline Yttria Stabilized Zirconia, Opt. Mater., 32, 62, 10.1016/j.optmat.2009.06.004

Kun, 2007, Study on Fabrication and Mechanism in of Porous Metals by Spark Plasma Sintering, J. Mater. Sci., 42, 302, 10.1007/s10853-006-1013-8

Suk, 2007, Fabrication of Graded Porous Structure with Pore size Distribution by SPS Process, Mater. Sci. Forum, 534-536, 965, 10.4028/www.scientific.net/MSF.534-536.965

Zhao, 2006, Processing of Porous NiTi by Spark Plasma Sintering, Proc. SPIE, 6170, 617013, 10.1117/12.658703

Nicula, 2007, Spark Plasma Sintering Synthesis of Porous Nanocrystalline Titanium Alloys for Biomedical Applications, Biomol. Eng., 24, 564, 10.1016/j.bioeng.2007.08.008

Kawagoe, 2008, Preparation of Porous Hydroxyapatite Ceramics by Spark Plasma Sintering, Trans. Mater. Res. Soc. Jpn., 33, 911, 10.14723/tmrsj.33.911

Zhang, 2008, Spark Plasma Sintering of Macroporous Calcium Phosphate Scaffolds from Nanocrystalline Powders, J. Eu. Ceram. Soc., 28, 539, 10.1016/j.jeurceramsoc.2007.07.012

Chakravarty, 2009, High Strength Porous Alumina by Spark Plasma Sintering, J. Eur. Ceram. Soc., 29, 1361, 10.1016/j.jeurceramsoc.2008.08.021

Dibandjo, 2008, Silica, Carbon and Boron Nitride Monoliths with Hierarchical Porosity Prepared by Spark Plasma Sintering Process, Micropor. Mesopor. Mater., 111, 643, 10.1016/j.micromeso.2007.07.036

Kim, 2008, Unprecedented Room-temperature Electrical Power Generation Using Nanoscale Fluorite-structured Oxide Electrolytes, Adv. Mater., 20, 556, 10.1002/adma.200700715