Elasto-damage mechanics of osteons: A bottom-up multiscale approach

Journal of the Mechanics and Physics of Solids - Tập 167 - Trang 104962 - 2022
Pierfrancesco Gaziano1, Elisabetta Monaldo2, Cristina Falcinelli3, Giuseppe Vairo1
1Department of Civil Engineering & Computer Science (DICII), University of Rome “Tor Vergata”, Via del Politecnico 1, 00133 Rome, Italy
2Department of Engineering, Roma Tre University, Via Vito Volterra 62, 00146 Rome, Italy
3Department of Engineering and Geology (InGeo), G. D’Annunzio Chieti-Pescara University, Viale Pindaro 42, 65127 Pescara, Italy

Tài liệu tham khảo

Akiva, 1998, Modelling the three-dimensional elastic constants of parallel-fibred and lamellar bone, J. Mater. Sci., 33, 1497, 10.1023/A:1004303926771 Ascenzi, 1990, The bending properties of single osteons, J. BioMech., 23, 763, 10.1016/0021-9290(90)90023-V Ascenzi, 1994, The torsional properties of single selected osteons, J. BioMech., 27, 875, 10.1016/0021-9290(94)90260-7 Ascenzi, 1982, The tensile properties of single osteonic lamellae: technical problems and preliminary results, J. BioMech., 15, 29, 10.1016/0021-9290(82)90032-X Ascenzi, 1967, The tensile properties of single osteons, Anat. Rec., 158, 375, 10.1002/ar.1091580403 Ascenzi, 1968, The compressive properties of single osteons, Anat. Rec., 161, 377, 10.1002/ar.1091610309 Ascenzi, 1973, An approach to the mechanical properties of single osteonic lamellae, J. BioMech., 6, 227, 10.1016/0021-9290(73)90044-4 Ausiello, 2002, Effect of adhesive layer properties on stress distribution in composite restorations—a 3D finite element analysis, Dental Mater., 18, 295, 10.1016/S0109-5641(01)00042-2 Barthelat, 2011, Toughness amplification in natural composites, J. Mech. Phys. Solids, 59, 829, 10.1016/j.jmps.2011.01.001 Barthelat, 2016, Structure and mechanics of interfaces in biological materials, Nat. Rev. Mater., 1, 1, 10.1038/natrevmats.2016.7 Bianchi, 2016, An integrated computational approach for aortic mechanics including geometric, histological and chemico-physical data, J. BioMech., 49, 2331, 10.1016/j.jbiomech.2016.01.045 Bianchi, 2017, A fsi computational framework for vascular physiopathology: a novel flow-tissue multiscale strategy, Med. Eng. Phys., 47, 25, 10.1016/j.medengphy.2017.06.028 Bigley, 2006, Osteon interfacial strength and histomorphometry of equine cortical bone, J. BioMech., 39, 1629, 10.1016/j.jbiomech.2005.05.006 Bonfield, 1967, Anisotropy of nonelastic flow in bone, J. Appl. Phys., 38, 2450, 10.1063/1.1709926 Brekelmans, 1995, Reduction of mesh sensitivity in continuum damage mechanics, Acta Mech., 110, 49, 10.1007/BF01215415 Brewer, 1988, Quadratic stress criterion for initiation of delamination, J. Composite Mater., 22, 1141, 10.1177/002199838802201205 Buehler, 2008, Nanomechanics of collagen fibrils under varying cross-link densities: atomistic and continuum studies, J. Mech. Behav. Biomed. Mater., 1, 59, 10.1016/j.jmbbm.2007.04.001 Concha, 2020, Upscaling the poroelastic behavior of the lung parenchyma: A finite-deformation micromechanical model, J. Mech. Phys. Solids, 145, 10.1016/j.jmps.2020.104147 Cowin, 2001 Crolet, 1993, Compact bone: numerical simulation of mechanical characteristics, J. BioMech., 26, 677, 10.1016/0021-9290(93)90031-9 Currey, 1996, The effects of ageing and changes in mineral content in degrading the toughness of human femora, J. BioMech., 29, 257, 10.1016/0021-9290(95)00048-8 Cusack, 1979, Determination of the elastic constants of collagen by brillouin light scattering, J. Mol. Biol., 135, 39, 10.1016/0022-2836(79)90339-5 Dong, 2005, Interfacial strength of cement lines in human cortical bone, Mol. Cellular BioMech., 2, 63 Eischen, 1993, Determining elastic behavior of composites by the boundary element method, J. Appl. Phys., 74, 159, 10.1063/1.354132 Falcinelli, 2019, Mechanical behavior of metastatic femurs through patient-specific computational models accounting for bone-metastasis interaction, J. Mech. Behav. Biomed. Mater., 93, 9, 10.1016/j.jmbbm.2019.01.014 Farzaneh, 2019, Inverse identification of local stiffness across ascending thoracic aortic aneurysms, BioMech. Model. Mechanobiol., 18, 137, 10.1007/s10237-018-1073-0 Fouchal, 2014, An interface model including cracks and roughness applied to masonry, Open Civ. Eng. J., 8, 263, 10.2174/1874149501408010263 Gao, 2006, Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials, Int. J. Fract., 138, 101, 10.1007/s10704-006-7156-4 Gaziano, 2022, A computational insight on damage-based constitutive modelling in femur mechanics, European J. Mech. A/Solids, 10.1016/j.euromechsol.2022.104538 Gaziano, 2020, Mechanical performance of anatomic-functional-geometry dental treatments: A computational study, Med. Eng. Phys., 86, 96, 10.1016/j.medengphy.2020.10.016 Gierig, 2021, Computational model of damage-induced growth in soft biological tissues considering the mechanobiology of healing, BioMech. Model. Mechanobiol., 20, 1297, 10.1007/s10237-021-01445-5 Giner, 2014, Numerical modelling of the mechanical behaviour of an osteon with microcracks, J. Mech. Behav. Biomed. Mater., 37, 109, 10.1016/j.jmbbm.2014.05.006 Giraud-Guille, 1988, Twisted plywood architecture of collagen fibrils in human compact bone osteons, Calcif. Tissue Int., 42, 167, 10.1007/BF02556330 Gizzi, 2021, Diffusion-based degeneration of the collagen reinforcement in the pathologic human cornea, J. Eng. Math., 127, 1, 10.1007/s10665-020-10088-x Guo, X., Liang, L., Goldstein, S., MicroMechanics of osteonal cortical bone fracture. Gupta, 2006, Cooperative deformation of mineral and collagen in bone at the nanoscale, Proc. Natl. Acad. Sci., 103, 17741, 10.1073/pnas.0604237103 Hamed, 2013, Multiscale damage and strength of lamellar bone modeled by cohesive finite elements, J. Mech. Behav. Biomed. Mater., 28, 94, 10.1016/j.jmbbm.2013.05.025 Hamed, 2010, Multiscale modeling of elastic properties of cortical bone, Acta Mech., 213, 131, 10.1007/s00707-010-0326-5 Hassenkam, 2004, High-resolution AFM imaging of intact and fractured trabecular bone, Bone, 35, 4, 10.1016/j.bone.2004.02.024 Hill, 1964, Theory of mechanical properties of fibre-strengthened materials: I elastic behaviour, J. Mech. Phys. Solids, 12, 199, 10.1016/0022-5096(64)90019-5 von Hoegen, 2019, Direct and inverse identification of constitutive parameters from the structure of soft tissues, Part 2: dispersed arrangement of collagen fibers, BioMech. Model. Mech., 18, 897, 10.1007/s10237-019-01119-3 Hogan, 1992, Micromechanics modeling of haversian cortical bone properties, J. BioMech., 25, 549, 10.1016/0021-9290(92)90095-I Hori, 1999, On two micromechanics theories for determining micro–macro relations in heterogeneous solids, Mech. Mater., 31, 667, 10.1016/S0167-6636(99)00020-4 Jäger, 2000, Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles, Biophys. J., 79, 1737, 10.1016/S0006-3495(00)76426-5 Jirásek, 2011, Damage and smeared crack models, 1 Katsamenis, 2013, Load-bearing in cortical bone microstructure: Selective stiffening and heterogeneous strain distribution at the lamellar level, J. Mech. Behav. Biomed. Mater., 17, 152, 10.1016/j.jmbbm.2012.08.016 Katz, 1971, Hard tissue as a composite material—I, bounds on the elastic behavior, J. BioMech., 4, 455, 10.1016/0021-9290(71)90064-9 Khatib, 2021, The effect of enzymatic crosslink degradation on the mechanics of the anterior cruciate ligament: A hybrid multi-domain model, Appl. Sci., 11, 8580, 10.3390/app11188580 Kollar, 2003 Kwon, 2018, Multiscale modeling of human bone, Multiscale Multidiscip. Model. Exp. Des., 1, 133, 10.1007/s41939-018-0013-0 Landis, 1995, The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix, Bone, 16, 533, 10.1016/8756-3282(95)00076-P Landis, 1993, Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction, J. Struct. Biol., 110, 39, 10.1006/jsbi.1993.1003 Lowenstam, 1989 Maceri, 2010, A unified multiscale mechanical model for soft collagenous tissues with regular fiber arrangement, J. Biomech., 43, 355, 10.1016/j.jbiomech.2009.07.040 Maceri, 2013, Age-dependent arterial mechanics via a multiscale elastic approach, Int. J. Comput. Methods Eng. Sci. Mech., 14, 141, 10.1080/15502287.2012.744114 Marino, 2018, Direct and inverse identification of constitutive parameters from the structure of soft tissues, Part 1: micro-and nanostructure of collagen fibers, BioMech. Model. Mechanobiol., 17, 1011, 10.1007/s10237-018-1009-8 Marino, 2017, A chemo-mechano-biological formulation for the effects of biochemical alterations on arterial mechanics: the role of molecular transport and multiscale tissue remodelling, J. R. Soc. Interface, 14, 10.1098/rsif.2017.0615 Marino, 2014, Influence of inter-molecular interactions on the elasto-damage mechanics of collagen fibrils: a bottom-up approach towards macroscopic tissue modeling, J. Mech. Phys. Solids, 73, 38, 10.1016/j.jmps.2014.08.009 Marino, 2014, Stress and strain localization in stretched collagenous tissues via a multiscale modelling approach, Comput. Methods Biomech. Biomed. Eng., 17, 11, 10.1080/10255842.2012.658043 Marotti, G., Cane, V., Palazzini, S., Palumbo, C., Structure-function relationships in the osteocyte. McPhedran, 1981, Bounds and exact theories for the transport properties of inhomogeneous media, Appl. Phys. A, 26, 207, 10.1007/BF00617840 Morin, 2021, Fiber rearrangement and matrix compression in soft tissues: Multiscale hypoelasticity and application to tendon, Front. Bioeng. Biotechnol., 855 Najafi, 2007, MicroMechanics fracture in osteonal cortical bone: A study of the interactions between microcrack propagation, microstructure and the material properties, J. BioMech., 40, 2788, 10.1016/j.jbiomech.2007.01.017 Nikolov, 2008, Hierarchical modeling of the elastic properties of bone at submicron scales: the role of extrafibrillar mineralization, Biophys. J., 94, 4220, 10.1529/biophysj.107.125567 Olszta, 2007, Bone structure and formation: A new perspective, Mater. Sci. Eng. R Rep., 58, 77, 10.1016/j.mser.2007.05.001 Paggi, 2012, Stiffness and strength of hierarchical polycrystalline materials with imperfect interfaces, J. Mech. Phys. Solids, 60, 557, 10.1016/j.jmps.2012.01.009 Pandolfi, 2019, A microstructural model of cross-link interaction between collagen fibrils in the human cornea, Philosoph. Trans. R. Soc. A, 377 Parsamian, 2001, Diffuse damage accumulation in the fracture process zone of human cortical bone specimens and its influence on fracture toughness, J. Mater. Sci. Mater. Med., 12, 779, 10.1023/A:1017916800421 Petruska, 1964, A subunit model for the tropocollagen macromolecule, Proc. Natl. Acad. Sci. U. S. A., 51, 871, 10.1073/pnas.51.5.871 Pidaparti, 1996, Bone mineral lies mainly outside collagen fibrils: predictions of a composite model for osternal bone, J. BioMech., 29, 909, 10.1016/0021-9290(95)00147-6 Pisano, 2021, Limit analysis of human proximal femur, J. Mech. Behav. Biomed. Mater., 124, 10.1016/j.jmbbm.2021.104844 Prendergast, 1996, Microdamage and osteocyte-lacuna strain in bone: a microstructural finite element analysis, J. Biomech. Eng., 118, 240, 10.1115/1.2795966 Reznikov, 2014, Bone hierarchical structure in three dimensions, Acta Biomater., 10, 3815, 10.1016/j.actbio.2014.05.024 Rho, 1998, Mechanical properties and the hierarchical structure of bone, Med. Eng. Phys., 20, 92, 10.1016/S1350-4533(98)00007-1 Robinson, 1952, An electron-microscopic study of the crystalline inorganic component of bone and its relationship to the organic matrix, J. Bone Joint Surg., 34, 389, 10.2106/00004623-195234020-00013 Rubin, 2003, TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone, Bone, 33, 270, 10.1016/S8756-3282(03)00194-7 Sabet, 2016, Modelling of bone fracture and strength at different length scales: a review, Interface Focus, 6, 10.1098/rsfs.2015.0055 Sen, 2011, Structural hierarchies define toughness and defect-tolerance despite simple and mechanically inferior brittle building blocks, Sci. Rep., 1, 1, 10.1038/srep00035 Suquet, 1987 Torquato, 1998, Effective stiffness tensor of composite media: II applications to isotropic dispersions, J. Mech. Phys. Solids, 46, 1411, 10.1016/S0022-5096(97)00083-5 Ural, 2014, Hierarchical perspective of bone toughness–from molecules to fracture, Int. Mater. Rev., 59, 245, 10.1179/1743280414Y.0000000031 Vashishth, 2007, Hierarchy of bone microdamage at multiple length scales, Int. J. Fatigue, 29, 1024, 10.1016/j.ijfatigue.2006.09.010 Vercher, 2014, Homogenized stiffness matrices for mineralized collagen fibrils and lamellar bone using unit cell finite element models, BioMech. Model. Mechanobiol., 13, 437, 10.1007/s10237-013-0507-y Wagner, 1992, On the relationship between the microstructure of bone and its mechanical stiffness, J. BioMech., 25, 1311, 10.1016/0021-9290(92)90286-A Weiner, 1992, Bone structure: from ångstroms to microns, FASEB J., 6, 879, 10.1096/fasebj.6.3.1740237 Weiner, 1999, Lamellar bone: structure–function relations, J. Struct. Biol., 126, 241, 10.1006/jsbi.1999.4107 Yao, 2007, Ab initio calculation of elastic constants of ceramic crystals, J. Am. Ceram. Soc., 90, 3194, 10.1111/j.1551-2916.2007.01931.x Zimmermann, 2011, Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales, Proc. Natl. Acad. Sci., 108, 14416, 10.1073/pnas.1107966108 Zioupos, 1998, Changes in the stiffness, strength, and toughness of human cortical bone with age, Bone, 22, 57, 10.1016/S8756-3282(97)00228-7