Elasticity and tumorigenic characteristics of cells in a monolayer after nanosecond pulsed electric field exposure
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alberts B, Bray D, Hopkin K, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2012) Lehrbuch der molekularen zellbiologie, vol 4, vollständig überarbeitete auflage. Wiley-VCH, Weinheim
Anderson PA, Muller-Borer BJ, Esch GL, Coleman WB, Grisham JW, Malouf NN (2007) Calcium signals induce liver stem cells to acquire a cardiac phenotype. Cell Cycle 6:1565–1569
Beebe SJ, White J, Blackmore PF, Deng Y, Somers K, Schoenbach KH (2003) Diverse effects of nanosecond pulsed electric fields on cells and tissues. DNA Cell Biol 22:785–796
Beebe SJ, Schoenbach KH, Heller R (2010) Bioelectric applications for treatment of melanoma. Cancers 2:1731–1770
Beebe SJ, Chen X, Liu J, Schoenbach KH (2011) Nanosecond pulsed electric field ablation of hepatocellular carcinoma Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE. IEEE, pp 6861–6865
Ben-Ze’ev A (1985) The cytoskeleton in cancer cells. BBA Rev Cancer 780:197–212
Breton M, Mir LM (2012) Microsecond and nanosecond electric pulses in cancer treatments. Bioelectromagnetics 33:106–123
Buehler MJ (2013) Mechanical players—the role of intermediate filaments in cell mechanics and organization. Biophys J 105:1733–1734
Caille N, Thoumine O, Tardy Y, Meister J-J (2002) Contribution of the nucleus to the mechanical properties of endothelial cells. J Biomech 35:177–187
Chen X, Kolb JF, Swanson RJ, Schoenbach KH, Beebe SJ (2010) Apoptosis initiation and angiogenesis inhibition: melanoma targets for nanosecond pulsed electric fields. Pigment cell melanoma Res 23:554–563
Chen X, Zhuang J, Kolb JF, Schoenbach KH, Beebe SJ (2012) Long term survival of mice with hepatocellular carcinoma after pulse power ablation with nanosecond pulsed electric fields. Technol Cancer Res Treat 11:83–93
Chopinet L, Roduit C, Rols MP, Dague E (2013) Destabilization induced by electropermeabilization analyzed by atomic force microscopy. BBA Biomembr 1828:2223–2229
Chopinet L, Dague E, Rols MP (2014) AFM sensing cortical actin cytoskeleton destabilization during plasma membrane electropermeabilization. Cytoskeleton 71:587–594
Cross SE, Jin Y-S, Rao J, Gimzewski JK (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2:780–783
Cross SE, Jin YS, Tondre J, Wong R, Rao J, Gimzewski JK (2008) AFM-based analysis of human metastatic cancer cells. Nanotechnology 19:384003
De Feijter AW, Ray JS, Weghorst CM, Klaunig JE, Goodman JI, Chang CC, Ruch RJ, Trosko JE (1990) Infection of rat liver epithelial cells with v-Ha-ras: correlation between oncogene expression, gap junctional communication, and tumorigenicity. Mol Carcinog 3:54–67
Fan J, Shen H, Dai Q, Minuk GY, Burzynski FJ, Gong Y (2009) Bone morphogenetic protein-4 induced Rat hepatic progenitor cell (WB-F344 cell) differentiation toward hepatocyte lineage. J Cell Physiol 220:72–81
Guilak F, Tedrow JR, Burgkart R (2000) Viscoelastic properties of the cell nucleus. Biochem Biophys Res Commun 269:781–786
Haga H, Sasaki S, Kawabata K, Ito E, Ushiki T, Sambongi T (2000) Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton. Ultramicroscopy 82:253–258
Hayashi T, Nomata K, Chang C-C, Ruch RJ, Trosko JE (1998) Cooperative effects of v-myc and c-Ha-ras oncogenes on gap junctional intercellular communication and tumorigenicity in rat liver epithelial cells. Cancer Lett 128:145–154
Jonas O, Mierke CT, Kas JA (2011) Invasive cancer cell lines exhibit biomechanical properties that are distinct from their noninvasive counterparts. Soft Matter 7:11488–11495
JPK Instruments AG a. QI™ mode - Quantitative Imaging with the NanoWizard 3 AFM. Technichal Note (jpk-tech-quantitative-imaging.14-1.pdf at www.jpk.com). Accessed 23 Mar 2017
JPK Instruments AG b. Investigation of living cells using JPK’s QI™ mode. Application Note (jpk-app-living-cells-qi.14-1.pdf at www.jpk.com. Accessed 23 Mar 2017
Kolb JF, Stacey M (2012) Subcellular biological effects of nanosecond pulsed electric fields Plasma for Bio-Decontamination, Medicine and Food Security. Springer, Heidelb erg, pp 361–379
Lee KW, Kim MS, Kang NJ, Kim DH, Surh YJ, Lee HJ, Moon A (2006) H-ras selectively up-regulates MMP-9 and COX-2 through activation of ERK1/2 and NF-κB: an implication for invasive phenotype in rat liver epithelial cells. Int J Cancer 119:1767–1775
Lekka M, Laidler P, Gil D, Lekki J, Stachura Z, Hrynkiewicz AZ (1999) Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. Eur Biophys J Biophys Lett 28:312–316
Liang C-C, Park AY, Guan J-L (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2:329–333
Neumann T (2008) Determining the elastic modulus of biological samples using atomic force microscopy. JPK Instruments, Berlin, Germany
Nuccitelli R, Tran K, Sheikh S, Athos B, Kreis M, Nuccitelli P (2010) Optimized nanosecond pulsed electric field therapy can cause murine malignant melanomas to self-destruct with a single treatment. Int J Cancer 127:1727–1736
Nuccitelli R, Tran K, Athos B, Kreis M, Nuccitelli P, Chang KS, Epstein EH, Tang JY (2012) Nanoelectroablation therapy for murine basal cell carcinoma. Biochem Biophys Res Commun 424:446–450
Olson MF, Sahai E (2009) The actin cytoskeleton in cancer cell motility. Clin Exp Metas 26:273–287
Pakhomov AG, Xiao S, Pakhomova ON, Semenov I, Kuipers MA, Ibey BL (2014) Disassembly of actin structures by nanosecond pulsed electric field is a downstream effect of cell swelling. Bioelectrochemistry 100:88–95
Rao KMK, Cohen HJ (1991) Actin cytoskeletal network in aging and cancer. Mutat Res DNAging 256:139–148
Roduit C, van der Goot FG, De Los Rios P, Yersin A, Steiner P, Dietler G, Catsicas S, Lafont F, Kasas S (2008) Elastic membrane heterogeneity of living cells revealed by stiff nanoscale membrane domains. Biophys J 94:1521–1532
Rother J, Nöding H, Mey I, Janshoff A (2014) Atomic force microscopy-based microrheology reveals significant differences in the viscoelastic response between malign and benign cell lines. Open Biology 4:140046
Stacey M, Fox P, Buescher S, Kolb J (2011) Nanosecond pulsed electric field induced cytoskeleton, nuclear membrane and telomere damage adversely impact cell survival. Bioelectrochemistry 82:131–134
Stamov DR, Kaemmer SB, Hermsdörfer A, Barner J, Jähnke T, Haschke H (2015) BioScience AFM—Capturing dynamics from single molecules to living cells. Microscopy Today 23:18–25
Steuer A, Schmidt A, Labohá P, Babica P, Kolb JF (2016) Transient suppression of gap junctional intercellular communication after exposure to 100-nanosecond pulsed electric fields. Bioelectrochemistry 112:33–46
Swaminathan V, Mythreye K, O’Brien ET, Berchuck A, Blobe GC, Superfine R (2011) Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Can Res 71:5075–5080
Thompson GL, Roth C, Tolstykh G, Kuipers M, Ibey BL (2014) Disruption of the actin cortex contributes to susceptibility of mammalian cells to nanosecond pulsed electric fields. Bioelectromagnetics 35:262–272
Tsao M-S, Smith JD, Nelson KG, Grisham JW (1984) A diploid epithelial cell line from normal adult rat liver with phenotypic properties of ‘oval’cells. Exp Cell Res 154:38–52
Wu S, Wang Y, Guo J, Chen Q, Zhang J, Fang J (2014) Nanosecond pulsed electric fields as a novel drug free therapy for breast cancer: an in vivo study. Cancer Lett 343:268–274
Xu WW, Mezencev R, Kim B, Wang LJ, McDonald J, Sulchek T (2012) Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells. PLoS One 7:e46609
Yamasaki H (1991) Aberrant expression and function of gap junctions during carcinogenesis. Environ Health Perspect 93:191
Yousafzai MS, Coceano G, Mariutti A, Ndoye F, Amin L, Niemela J, Bonin S, Scoles G, Cojoc D (2016) Effect of neighboring cells on cell stiffness measured by optical tweezers indentation. J Biomed Opt 21:057004
Zhou J, Zhao L, Qin L, Wang J, Jia Y, Yao H, Sang C, Hu Q, Shi S, Nan X (2010) Epimorphin regulates bile duct formation via effects on mitosis orientation in rat liver epithelial stem-like cells. PLoS One 5:e9732