Elastically deformable models

Association for Computing Machinery (ACM) - Tập 21 Số 4 - Trang 205-214 - 1987
Demetri Terzopoulos1, John Platt2, Alan H. Barr2, Kurt Fleischer1
1Schlumberger Palo Alto Research, Palo Alto, CA
2California Institute of Technology, Pasadena

Tóm tắt

The theory of elasticity describes deformable materials such as rubber, cloth, paper, and flexible metals. We employ elasticity theory to construct differential equations that model the behavior of non-rigid curves, surfaces, and solids as a function of time. Elastically deformable models are active: they respond in a natural way to applied forces, constraints, ambient media, and impenetrable obstacles. The models are fundamentally dynamic and realistic animation is created by numerically solving their underlying differential equations. Thus, the description of shape and the description of motion are unified.

Từ khóa


Tài liệu tham khảo

Armstrong , W.W. , and Green , M ., " The dynamics of articulated rigid bodies for purposes of animation," Proc . Graphics Interface '85 , Montreal, Canada , 1985 , 407 - 415 . Armstrong, W.W., and Green, M., "The dynamics of articulated rigid bodies for purposes of animation," Proc. Graphics Interface '85, Montreal, Canada, 1985, 407-415.

10.1145/800031.808573

Courant , R. , and Hilbert , D. , Methods of Mathematical Physics , Vol. I , Interscienee , London , 1953 . Courant, R., and Hilbert, D., Methods of Mathematical Physics, Vol. I, Interscienee, London, 1953.

Dahlquist , G. , and Bjorek , A. , Numerical Methods , Prentice-HM1 , Englewood Cliffs , N J , 1974 . Dahlquist, G., and Bjorek, A., Numerical Methods, Prentice-HM1, Englewood Cliffs, N J, 1974.

10.1007/978-1-4612-6333-3

do Carmo , M.P. , Differential Geometry of Curves and Surfaces , Prentice-Hall , Englewood Cliffs , N J, 1974 . do Carmo, M.P., Differential Geometry of Curves and Surfaces, Prentice-Hall, Englewood Cliffs, N J, 1974.

Faux , ,I.D., and Pratt~ M.J. , Computational Geometry for Design and Manufacture , Halstead Press , Horwood, NY , 1981 . Faux, ,I.D., and Pratt~ M.J., Computational Geometry for Design and Manufacture, Halstead Press, Horwood, NY, 1981.

10.1145/15886.15894

Fung , Y.C. , Foundations of Solid Mechanics , Prentice- Hall, Englewood Cliffs , N J , 1965 . Fung, Y.C., Foundations of Solid Mechanics, Prentice- Hall, Englewood Cliffs, N J, 1965.

Gelfand~ I.M. ~ and Fomin , S.V. , Calculus of Variations , Prentice-Hall , Englewood Cliffs , N J, 1963 . Gelfand~ I.M.~ and Fomin, S.V., Calculus of Variations, Prentice-Hall, Englewood Cliffs, N J, 1963.

Goldsteln~ H. ClassicalMechanics Addison-Wesley Reading MA 1950. Goldsteln~ H. ClassicalMechanics Addison-Wesley Reading MA 1950.

10.1145/15886.15901

10.1145/15886.15902

10.1145/800031.808594

Landau , L.D. , and Lifshitz , E.M. , Theory of Elasticity , Pergamon Press , London, UK , 1959 . Landau, L.D., and Lifshitz, E.M., Theory of Elasticity, Pergamon Press, London, UK, 1959.

Lapidus , L. , and Pinder , G.F. , Numerical Solution of Partial Differential Equations in Science and Engineering , Wiley , New York, NY , 1982 . Lapidus, L., and Pinder, G.F., Numerical Solution of Partial Differential Equations in Science and Engineering, Wiley, New York, NY, 1982.

10.1145/15886.15893

10.1145/15886.15903

Stoker , J . J . , Nonlinear Elasticity , New York, NY , 1968 . Stoker, J .J ., Nonlinear Elasticity, New York, NY, 1968.

10.1016/0734-189X(83)90020-8

10.1109/TPAMI.1986.4767807

Terzopoulos , D. ~ " On matching deformable models to images: Direct and iterative solutions," Topical Meeting on Machine Vision , Technical Digest Series , Vol. 1~., Optical Society of America, Washington, DC, 1987 , 160 - 167 . Terzopoulos, D.~ "On matching deformable models to images: Direct and iterative solutions," Topical Meeting on Machine Vision, Technical Digest Series, Vol. 1~., Optical Society of America, Washington, DC, 1987, 160-167.

10.1145/15886.15891

10.5555/20313.20331

10.1145/15886.15895

Zienkiewicz , O.C. , The Finite Element Method ; Third edition, McGraw-Hill , London , 1977 . Zienkiewicz, O.C., The Finite Element Method; Third edition, McGraw-Hill, London, 1977.