Tính chất đàn hồi của vật liệu nanocomposite: ảnh hưởng của các khuyết tật ống nano carbon và liên kết bề mặt

Meccanica - 2016
Marko Čanađija1, Marino Brčić1, Josip Brnić1
1Faculty of Engineering, Department of Engineering Mechanics, University of Rijeka, Rijeka, Croatia

Tóm tắt

Bài viết này nghiên cứu sự suy giảm tính chất đàn hồi của một vật liệu composite được gia cố bởi ống nano carbon. Các nguồn gốc của sự suy giảm bao gồm sự gợn sóng của ống nano, các khe hở và các khuyết tật 5-7-7-5. Tài liệu này nhằm thiết lập quy trình tính toán dựa trên phương pháp phần tử hữu hạn nguyên tử để ước lượng tính chất đàn hồi bằng cách xem xét các khuyết tật này. Một loại nanocomposite epoxy với các tính chất điển hình được lựa chọn và phân tích kỹ lưỡng. Sự chú ý đặc biệt được dành cho việc mô phỏng chính xác các lực van der Waals tại giao diện ma trận-ống nano. Một loạt các thí nghiệm số với các tỷ lệ gợn sóng và loại khuyết tật khác nhau đã được thực hiện và dựa vào những kết quả này, việc nội suy các tính chất đàn hồi được tiến hành. Kết quả cho thấy việc mô hình hóa chính xác các tương tác van der Waals và sự gợn sóng có ảnh hưởng sâu sắc đến hành vi cơ học của nanocomposite, trong khi các loại khuyết tật khác có vai trò thứ yếu.

Từ khóa

#tính chất đàn hồi #vật liệu composite #ống nano carbon #khuyết tật #lực van der Waals

Tài liệu tham khảo

Arasteh R, Omidi M, Rousta AHA, Kazerooni H (2011) A study on effect of waviness on mechanical properties of multi-walled carbon nanotube/epoxy composites using modified Halpin–Tsai theory. J Macromol Sci Part B Phys 50(12):2464–2480 Baji A, Mai Y, Wong S, Abtahi M, Du X (2010) Mechanical behavior of self-assembled carbon nanotube reinforced nylon 6,6 fibers. Compos Sci Technol 70(9):1401–1409 Bradshaw RD, Fisher FT, Brinson LC (2003) Fiber waviness in nanotube-reinforced polymer composites—II: modeling via numerical approximation of the dilute strain concentration tensor. Compos Sci Technol 63(11):1705–1722 Brcic M, Canadija M, Brnic J (2013) Estimation of material properties of nanocomposite structures. Meccanica 48(9):2209–2220 Brcic M, Canadija M, Brnic J (2015) Influence of waviness and vacancy defects on carbon nanotubes properties. Proced Eng 100:213–219 Canadija M, Brcic M, Brnic J (2013) Bending behaviour of single-layered graphene nanosheets with vacancy defects. Eng Rev 33(1):9–14 Canadija M, Barretta R, de Sciarra FM (2016a) A gradient elasticity model of Bernoulli–Euler nanobeams in non-isothermal environments. Eur J Mech - A/Solids 55:243–255 Canadija M, Barretta R, de Sciarra FM (2016b) On functionally graded Timoshenko nonisothermal nanobeams. Compos Struct 135:286–296 Cebeci H, Villoria RGd, Hart AJ, Wardle BL (2009) Multifunctional properties of high volume fraction aligned carbon nanotube polymer composites with controlled morphology. Compos Sci Technol 69(15–16):2649–2656 Chen WH, Cheng HC, Liu YL (2010) Radial mechanical properties of single-walled carbon nanotubes using modified molecular structure mechanics. Comput Mater Sci 47(4):985–993. doi:10.1016/j.commatsci.2009.11.034 Chwał M (2011) Influence of vacancy defects on the mechanical behavior and properties of carbon nanotubes. Proced Eng 10:1579–1584 Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44(9):1624–1652 Fan Y, Goldsmith BR, Collins PG (2005) Identifying and counting point defects in carbon nanotubes. Nat Mater 4(12):906–911 Farsadi M, Öchsner A, Rahmandoust M (2013) Numerical investigation of composite materials reinforced with waved carbon nanotubes. J Compos Mater 47(11):1425–1434 Fisher FT, Bradshaw RD, Brinson LC (2002) Effects of nanotube waviness on the modulus of nanotube-reinforced polymers. Appl Phys Lett 80(24):4647–4649 Fisher FT, Bradshaw RD, Brinson LC (2003) Fiber waviness in nanotube-reinforced polymer composites—I: modulus predictions using effective nanotube properties. Compos Sci Technol 63(11):1689–1703 Frankland SJV, Harik VM, Odegard GM, Brenner DW, Gates TS (2003) The stress-strain behavior of polymer-nanotube composites from molecular dynamics simulation. Compos Sci Technol 63(11):1655–1661 Ghavamian A, Rahmandoust M, Öchsner A (2012) A numerical evaluation of the influence of defects on the elastic modulus of single and multi-walled carbon nanotubes. Comput Mater Sci 62:110–116 Gkikas G, Paipetis A (2014) Optimisation and analysis of the reinforcement effect of carbon nanotubes in a typical matrix system. Meccanica 50(2):461–478 Gou J, Lau T (2005) Handbook of theoretical and computational nanotechnology. American Scientific Publishers, chap Modeling and Simulation of Carbon N anotube/Polymer Composites, pp 1–33 Halpin JC, Kardos JL (1976) Halpin–Tsai equations. A review. Polym Eng Sci 16(5):344–352 Hou W, Xiao S (2007) Mechanical behaviors of carbon nanotubes with randomly located vacancy defects. J Nanosci Nanotechnol 7(12):4478–4485 Jiang LY, Huang Y, Jiang H, Ravichandran G, Gao H, Hwang KC, Liu B (2006) A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force. J Mech Phys Solids 54(11):2436–2452 Jorgensen WL, Severance DL (1990) Aromatic-aromatic interactions: free energy profiles for the benzene dimer in water, chloroform, and liquid benzene. JACS 112(12):4768–4774 Joshi UA, Sharma SC, Harsha SP (2011) Effect of waviness on the mechanical properties of carbon nanotube based composites. Phys E 43(8):1453–1460 Kouznetsova V, Brekelmans W, Baaijens F (2001) Approach to micro-macro modeling of heterogeneous materials. Comput Mech 27(1):37–48. doi:10.1007/s004660000212 Li C, Chou TW (2003) A structural mechanics approach for the analysis of carbon nanotubes. Int J Solids Struct 40(10):2487–2499 Li K, Saigal S (2007) Micromechanical modeling of stress transfer in carbon nanotube reinforced polymer composites. Mater Sci Eng A 457(1–2):44–57 Liao K, Li S (2001) Interfacial characteristics of a carbon nanotube-polystyrene composite system. Appl Phys Lett 79(25):4225–4227. doi:10.1063/1.1428116 Meguid S, Wernik J, Cheng Z (2010) Atomistic-based continuum representation of the effective properties of nano-reinforced epoxies. Int J Solids Struct 47(13):1723–1736 Motamedi M, Eskandari M, Yeganeh M (2012) Effect of straight and wavy carbon nanotube on the reinforcement modulus in nonlinear elastic matrix nanocomposites. Mater Des 34:603–608 Omidi M, Hossein Rokni DT, Milani AS, Seethaler RJ, Arasteh R (2010) Prediction of the mechanical characteristics of multi-walled carbon nanotube/epoxy composites using a new form of the rule of mixtures. Carbon 48(11):3218–3228 Pantano A, Cappello F (2008) Numerical model for composite material with polymer matrix reinforced by carbon nanotubes. Meccanica 43(2):263–270 Pantano A, Modica G, Cappello F (2008) Multiwalled carbon nanotube reinforced polymer composites. Mater Sci Eng, A 486(1–2):222–227 Pozrikidis C (2009) Effect of the Stone–Wales defect on the structure and mechanical properties of single-wall carbon nanotubes in axial stretch and twist. Arch Appl Mech 79(2):113–123 Rafiee R (2013) Influence of carbon nanotube waviness on the stiffness reduction of CNT/polymer composites. Compos Struct 97:304–309 Rajasekaran G, Narayanan P, Parashar A (2016) Effect of point and line defects on mechanical and thermal properties of graphene: a review. Crit Rev Solid State Mater Sci 41(1):47–71 Rappé AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. JACS 114(25):10024–10035 Savvas D, Papadopoulos V, Papadrakakis M (2012) The effect of interfacial shear strength on damping behavior of carbon nanotube reinforced composites. Int J Solids Struct 49(26):3823–3837. doi:10.1016/j.ijsolstr.2012.08.031 Schadler L, Giannaris S, Ajayan P (1998) Load transfer in carbon nanotube epoxy composites. Appl Phys Lett 73(26):3842–3844. doi:10.1063/1.122911 Shokrieh MM, Rafiee R (2010) On the tensile behavior of an embedded carbon nanotube in polymer matrix with non-bonded interphase region. Compos Struct 92(3):647–652 Shokrieh MM, Rafiee R (2012) Development of a full range multi-scale model to obtain elastic properties of CNT/polymer composites. Iran Polym J (English Edition) 21(6):397–402 Szeluga U, Kumanek B, Trzebicka B (2015) Synergy in hybrid polymer/nanocarbon composites. A review. Compos Part A Appl Sci Manuf 73:204–231 Tan H, Jiang LY, Huang Y, Liu B, Hwang KC (2007) The effect of van der Waals-based interface cohesive law on carbon nanotube-reinforced composite materials. Compos Sci Technol 67(14):2941–2946 Tserpes KI, Papanikos P (2007) The effect of Stone–Wales defect on the tensile behavior and fracture of single-walled carbon nanotubes. Compos Struct 79(4):581–589 Tserpes KI, Papanikos P, Labeas G, Pantelakis SG (2008) Multi-scale modeling of tensile behavior of carbon nanotube-reinforced composites. Theor Appl Fract Mech 49(1):51–60 Tucker CL III, Liang E (1999) Stiffness predictions for unidirectional short-fiber composites: review and evaluation. Compos Sci Technol 59(5):655–671 Weldon DN, Blau WJ, Zandbergen HW (1995) A high resolution electron microscopy investigation of curvature in carbon nanotubes. Chem Phys Lett 241(4):365–372 Wong M, Paramsothy M, Xu X, Ren Y, Li S, Liao K (2003) Physical interactions at carbon nanotube-polymer interface. Polymer 44(25):7757–7764. doi:10.1016/j.polymer.2003.10.011 Xia Z, Zhou C, Yong Q, Wang X (2006) On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites. Int J Solids Struc 43(2):266–278. doi:10.1016/j.ijsolstr.2005.03.055 Yazdchi K, Salehi M (2011) The effects of CNT waviness on interfacial stress transfer characteristics of CNT/polymer composites. Compos Part A Appl Sci Manuf 42(10):1301–1309