Elastic, electronic, thermal and magnetic investigations of PrX (X = Fe,Ru) superconductors materials

Materials Today Communications - Tập 35 - Trang 105545 - 2023
A. Benamara1, N. Moulay2, Y. Azzaz1, M. Ameri1, M. Rabah3, Y. Al‐Douri4,5,6, A. Bouhemadou4, Ch. Moumen7
1Laboratory of Advanced Materials Physical Chemistry (LPCMA), Department of Physics, University of Djillali Liabes, BP 89, Sidi-Bel-Abbes 22000, Algeria
2Department of Physics, University of Djillali Liabes, BP 89, Sidi-Bel-Abbes 22000, Algeria
3Laboratory of Magnetic Materials,University of Djillali Liabes, BP 89, Sidi-Bel-Abbes 22000, Algeria
4Department of Applied Science and Astronomy, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
5Department of Mechanical Engineering, Faculty of Engineering, Piri Reis University, Eflatun Sk. No:8, 34940 Tuzla, Istanbul, Turkey
6Nanotechnology and Catalysis Research Center (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
7Electronics Department, Mentouri Brothers University, Constantine 1, 25000 Algeria

Tóm tắt

Từ khóa


Tài liệu tham khảo

Salma, 2019, Ali, MgCu2-type laves phases CaPt2, SrPd2 and SrPt2: a DFT based ab-initio investigation, Solid State Commun., 296, 1, 10.1016/j.ssc.2019.03.012

Roy, 2021, Hydrogen storage properties of hexagonal C14 Laves phase Cu2Cd: a DFT study, J. Solid State Chem., 304, 122560, 10.1016/j.jssc.2021.122560

Skripov, 2007, Hydrogen jump diffusion in C14-type ZrMn2H3: quasielastic neutron scattering study, Phys. Rev. B, 76, 104305, 10.1103/PhysRevB.76.104305

Shabara, 2017, A first-principles study of elastic, magnetic, and structural properties of PrX2 (X=Fe, Mn, Co) compounds, J. Magn. Magn. Mater., 447, 10.1016/j.jmmm.2016.09.075

Cwik, 2015, Magnetic properties and transformation of crystal structure in the ErFe2-ErAl2 system, J. Appl. Phys., 117, 123912, 10.1063/1.4916353

Bentall, 2003, Structure of DyFe2/YFe2 laves phase superlattices grown by molecular beam epitaxy, J. Phys. Condens. Matter, 15, 6493, 10.1088/0953-8984/15/38/017

Shimotomai, 1983, Magnetic properties of laves phases PrxSm1−XFe2, J. Magn. Magn. Mater., 31–34, 215, 10.1016/0304-8853(83)90221-4

Franse, 1993, Magnetic properties of binary rare-earth 3d-transition-metal intermetallic compounds, Handb. Magn. Mater., 7, 307, 10.1016/S1567-2719(05)80046-0

Matthias, 1957, Superconducting alkaline earth compounds, Phys. Rev., 107, 1558, 10.1103/PhysRev.107.1558

Wood, 1958, Laves-phase compounds of alkaline earths and noble metals, Acta Crystallogr, 11, 429e433, 10.1107/S0365110X58001134

Haldolaarachchige, 2015, Characterization of the heavy metal pyrochlore lattice superconductor CaIr2, J. Phys. Condens. Matter, 27, 10.1088/0953-8984/27/18/185701

Tütüncü, 2017, Effects of spin-orbit coupling on the electron-phonon superconductivity in the cubic Laves-phase compounds CaIr2 and CaRh2, Phys. Rev. B, 96, 10.1103/PhysRevB.96.134514

Rahaman, 2018, Investigation of the physical properties of two Laves phase compounds HRh2 (H = Ca and La): a DFT study, Int. J. Mod. Phys. B, 32, 1850149, 10.1142/S0217979218501497

Brooks, 1991, Magnetism in rare-earth metals and rare-earth intermetallic Compounds, J. Phys: Condens. Matter, 3, 2357

Benaissa, 2021, Theoretical study of magneto‐electronic properties of TmCo2 and NdCo2 intermetallic compounds through density functional theory calculations, Int. J. Quantum Chem., 121, e26488, 10.1002/qua.26488

Zhang, 2019, Design of high resistivity light-rare-earth-based PrFe1.93 magnetostrictive alloys: Si doping and high-pressure annealing, J. Magn. Magn. Mater., 471, 64, 10.1016/j.jmmm.2018.09.055

Shrivastava, 2017, Structural, electronic and elastic properties of RERu2 (RE = Pr, Nd and Sm) Laves phase compound, Indian J. Pure Appl. Phys., 55, 786

BELKHOUANE, 2021, Electronic structure, magnetic and structural properties of binary cubic C15 Laves phases PrX2 (X = Co and Fe): a first-principles study, Appl. Phys. A, 127, 835, 10.1007/s00339-021-04980-1

Ogunbunmi, 2021, Low-energy quantum fluctuations and frustrated magnetism in rare-earth-based Shastry-Sutherland lattices: Insights on the CaCo2Al8 structure type antiferromagnets, Mater. Today Physics21, 100552, 10.1016/j.mtphys.2021.100552

Bentouafa, 2019, Electronic structure of REFe2 (RE = Dy, Ho and Er) intermetallic compounds: Ab initio spin-density functional theory, Solid State Commun., 296, 1

Benmedjahed, 2020, DFT study on the electronic structure and the magnetic properties of SmFe2 and HoCo2 binary cubic C15-Laves phase, SPIN, 10, 2050020, 10.1142/S2010324720500204

Madsen, 2006, code for calculating band-structure dependent quantities, Comput. Phys. Commun., 175, 67, 10.1016/j.cpc.2006.03.007

Ameri. Murnaghan, 1944, The compressibility of media under extreme pressures, Proc. Natl. Acad. Sci., 30, 244, 10.1073/pnas.30.9.244

Grijalva-Castillo, 2018, First order reversal curve study of SmFe2 melt-spun ribbons, Materials, 11, 1804, 10.3390/ma11101804

Rached, 2009, First-principles calculations of structural, elastic and electronic properties of Ni2MnZ (Z = Al, Ga and In) Heusler alloys, Solid State Phys. B, 246, 1580, 10.1002/pssb.200844400

Samata, 1998, Crystal growth and magnetic properties of SmFe2, Jpn. J. Appl. Phys., 37, 5544, 10.1143/JJAP.37.5544

Mehl, 1993, Pressure dependence of the elastic moduli in aluminum-rich Al-Li compounds, Phys. Rev. B, 47, 2493, 10.1103/PhysRevB.47.2493

Mehl, 1990, Structural properties of ordered high-melting-temperature intermetallic alloys from first-principles total-energy calculations, Phys. Rev. B, 41, 10331, 10.1103/PhysRevB.41.10311

Kanchana, 2006, First-principles study of elastic properties of CeO2, ThO2 and PoO2, J. Phys.: Condens. Matter, 18, 9615

Kleinman, 1962, Covalent bonding and charge density in diamond, Phys. Rev., 128, 2614, 10.1103/PhysRev.128.2614

Duane, 1972

Zener, 1948

Silayi, 2018, A tight-binding molecular dynamics study of the noble metals Cu, Ag and Au, Comput. Mater. Sci., 146, 278, 10.1016/j.commatsci.2018.01.046

Schreiber, 1973

Hill, 1953, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. Lond., 65, 909

Reuss, 1929, Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals, Mater. Phys, 9, 49

Haines, 2001, Synthesis and design of superhard materials, Annu. Rev. Mater. Res., 31, 1, 10.1146/annurev.matsci.31.1.1

Pugh, 1954, XCII, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag., 45, 823, 10.1080/14786440808520496

Vaitheeswaran, 2007, High-pressure structural, elastic and electronic properties of the scintillator host material, KMgF3, Phys. Rev. B, 76, 014107, 10.1103/PhysRevB.76.014107

I.N. Frantsevich, F.F. Voronov, S.K. Bocuta, in: I.N. Frantsevich (Ed.), Elastic constant and elastic moduli of metals and insulator handbook, naukova dumka, kiev, (1983) pp. 60–180.

Christman, 1988

Mayer, 2003, Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases, Intermetallics, 11, 23, 10.1016/S0966-9795(02)00127-9

CLARK, 1977, Magnetostriction of rare earth-Fe2 Laves phase compounds, Phys. B+C., 86–88, 73, 10.1016/0378-4363(77)90231-5

Murad, 2022, Hybrid DFT study of structural, electronic, magnetic and elastic properties of laves phase binary intermetallics RFe2 (R =La, Ce, Pr and Nd), J. Rare Earths

Anderson, 1963, A simplified method for calculating the debye temperature from elastic constants, J. Phys. Chem. Solids, 24, 909, 10.1016/0022-3697(63)90067-2

Y. Li, C. Tang, J. Du, G. Wu, W. Zhan, W. Yan, G. Xu, Q. Yang J. Appl. Phys. 83 (1998) 7753–7769.

GREIDANUS, 1983, Magnetic properties of PrX2 compounds (X = Pt, Rh, Ru, Ir) studied by hyperfine specific heat, magnetization and neutron-diffraction measurements, Phys. B+C., 119, 215, 10.1016/0378-4363(83)90032-3

Meyer, 1981, Detailed study of NdFe2 and additional results relative to PrFe2 and YbFe2. Comparison with other R.E. Fe2 compounds, J. Phys., 42, 605, 10.1051/jphys:01981004204060500

Belov, 1964, Ferromagnetism and antiferromagnetism of rare-earth metals, Sov. Phys. Uspekhi, 7, 179, 10.1070/PU1964v007n02ABEH003660

Schreiber, 1973

Coffey, 2010, Absence of the hyperfine magnetic field at the Ru site in ferromagnetic rare-earth intermetallics, Phys. Rev. B, 81, 184404, 10.1103/PhysRevB.81.184404

B..Fultz, Hyperene Interact. 41, 607 (1988).

Shimotomai, 1980, Magnetic characteristics of Laves phase compound PrFe2, J. Phys. F: Met. Phys., 10, 707, 10.1088/0305-4608/10/4/021

John Michael Cadogan, Hyperfine fields in Tm, Gd and Dy intermetallic compounds, The University of New South Wales, (1982).

Mehmood, 2020, Effects of A-site cation on the physical properties of quaternary perovskites AMn3V4O12 (A= Ca, Ce and Sm), Mater. Chem. Phys., 254, 123229, 10.1016/j.matchemphys.2020.123229

Guezlane, 2016, Electronic, magnetic and thermal properties of Co2CrxFe1−x X (X=Al, Si) Heusler alloys: first-principles calculations, J. Magn. Magn. Mater., 414, 219, 10.1016/j.jmmm.2016.04.056

Blügel, 1987, Hyperfine fields of 3d and 4d impurities in nickel, Phys. Rev., B35, 3271, 10.1103/PhysRevB.35.3271

Isaev, 2007, Phonon related properties of transition metals, their carbides, and nitrides: a first-principles study, J. Appl. Phys., 101, 123519, 10.1063/1.2747230

Khelfaoui, 2018, Structural, elastic, thermodynamic, electronic and magnetic investigations of full-Heusler compound Ag2CeAl: FP-LAPW method, J. Supercond. Nov. Magn., 31, 3183, 10.1007/s10948-017-4530-6

A. Giguère, Transitions de phase magnétiques du premier ordre, métamagnétisme et effet magnétocalorique dans des alliages intermétalliques choisis, Université Du Québec (1998).

Stein, 2021, Laves phases: a review of their functional and structural applications and an improved fundamental understanding of stability and properties, J. Mater. Sci., 56, 5321, 10.1007/s10853-020-05509-2