Elastic, electronic, optical and thermoelectric properties of the novel Zintl-phase Ba2ZnP2
Tóm tắt
Từ khóa
Tài liệu tham khảo
Chiolerio, 2020, Waste heat to power conversion by means of thermomagnetic hydrodynamic energy harvester, Appl. Energy, 277, 115591, 10.1016/j.apenergy.2020.115591
Hidayanti, 2020, Energy harvesting system design for converting noise into electrical energy, Int. J. Adv. Sci., 29, 4791
Liu, 2020, Solar evaporation for simultaneous steam and power generation, J. Mater. Chem., 8, 513, 10.1039/C9TA12211G
Gholikhani, 2020, A critical review of roadway energy harvesting technologies, Appl. Energy, 261, 10.1016/j.apenergy.2019.114388
Kumar R, 2020, Theoretical investigation of the structural, elastic, electronic, and dielectric properties of alkali-metal-based bismuth ternary chalcogenides, Phy. Rev. Mater., 4
McGuire, 2005, Exploring thallium compounds as thermoelectric materials: seventeen new thallium chalcogenides, Chem. Mater., 17, 2875, 10.1021/cm050412c
Shuai, 2017, Recent progress and future challenges on thermoelectric Zintl materials, Mater. Today Phys., 1, 74, 10.1016/j.mtphys.2017.06.003
Chen, 2020, Q. Zhang Manipulating the intrinsic vacancies for enhanced thermoelectric performance in Eu2ZnSb2 Zintl phase, Nano Energy, 73, 10.1016/j.nanoen.2020.104771
Ren, 2018, Recent advances in inorganic material thermoelectrics, Inorg. Chem. Front., 5, 2380, 10.1039/C8QI00366A
Toberer, 2010, The Zintl compound Ca5Al2Sb6for low‐cost thermoelectric power generation, Adv. Funct. Mater., 20, 4375, 10.1002/adfm.201000970
Balvanz, 2020, New n-type Zintl phases for thermoelectrics: discovery, structural characterization, and band engineering of the compounds A2CdP2 (A = Sr, Ba, Eu), Chem. Mater., 32, 24, 10.1021/acs.chemmater.0c03960
Kunz Wille, 2019, Seebeck and figure of merit enhancement by rare earth doping in Yb14−xRExZnSb11 (x = 0.5), Materials, 12, 10.3390/ma12050731
Cheikh, 2019, Thermoelectric properties of scandium sesquitelluride, Materials, 12, 10.3390/ma12050734
Ovchinnikov, 2018, Exploratory work in the quaternary system of Ca-Eu-Cd-Sb: synthesis, crystal, and electronic structures of new Zintl solid solutions, Materials, 11, 10.3390/ma11112146
Peng, 2019, Limits of cation solubility in AMg2Sb2 (A = Mg, Ca, Sr, Ba) alloys, Materials, 12, 586, 10.3390/ma12040586
Zhang, 2020, Promising Zintl-phase thermoelectric compound SrAgSb, Chem. Mater., 32, 6983, 10.1021/acs.chemmater.0c02317
Zhang, 2020, A dual role by incorporation of magnesium in YbZn2Sb2 Zintl phase for enhanced thermoelectric performance, Adv. Energy Mater., 10, 10.1002/aenm.202001229
Zhou, 2020, Thermoelectric properties of Zintl phase YbMg2Sb2, Chem. Mater., 32, 776, 10.1021/acs.chemmater.9b04131
Brown, 2006, Yb14MnSb11: new high efficiency thermoelectric material for power generation, Chem. Mater., 18, 1873, 10.1021/cm060261t
Toberer, 2010, The Zintl compound Ca5Al2Sb6 for low‐cost thermoelectric power generation, Adv. Funct. Mater., 20, 4375, 10.1002/adfm.201000970
Chen, 2019, Zintl-phase Eu2ZnSb2: a promising thermoelectric material with ultralow thermal conductivity, Proc. Natl. Acad. Sci. U.S.A., 116, 2831, 10.1073/pnas.1819157116
Zintl, 1939, Intermetallische verbindungen (intermetallic compounds), Angew. Chem., 52, 10.1002/ange.19390520102
1996
Balvanz, 2020, Synthesis, structural characterization, and electronic structure of the novel Zintl phase Ba2ZnP2, Acta Crystallogr., C76, 869
Rudysh, 2020, AgGaTe2 – the thermoelectric and solar cell material: structure, electronic, optical, elastic and vibrational features, Infrared Phys. Technol., 111, 10.1016/j.infrared.2020.103476
Clark, 2005, First-principles methods using CASTEP, Z. Kristallogr., 220, 567, 10.1524/zkri.220.5.567.65075
Blaha, 2020, WIEN2k: an APW+lo program for calculating the properties of solids, J. Chem. Phys., 152, 10.1063/1.5143061
Vanderbilt, 1990, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, 41, 7892, 10.1103/PhysRevB.41.7892
Perdew, 2008, Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett., 100, 10.1103/PhysRevLett.100.136406
Monkhorst, 1976, Special points for Brillouin-zone integrations, Phys. Rev. B, 13, 10.1103/PhysRevB.13.5188
Fischer, 1992, General methods for geometry and wave function optimization, J. Phys. Chem., 96, 9768, 10.1021/j100203a036
Tran, 2009, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential, Phys. Rev. Lett., 102, 226401, 10.1103/PhysRevLett.102.226401
Koller, 2011, Merits and limits of the modified Becke-Johnson exchange potential, Phys. Rev. B, 83, 10.1103/PhysRevB.83.195134
Ambrosch-Draxl, 2006, Linear optical properties of solids within the full potential linearized augmented plane wave method, Comput. Phys. Commun., 175, 1, 10.1016/j.cpc.2006.03.005
Fang, 2017, Validity of rigid-band Approximation in the study of thermoelectric properties of p-type FeNbSb-based half-heusler compounds, J. Electron. Mater., 46, 3030, 10.1007/s11664-016-5122-0
Lee, 2012, Validity of the rigid band approximation in the study of the thermopower of narrow band gap semiconductors, Phys. Rev. B, 85, 1651491, 10.1103/PhysRevB.85.165149
Fang, 2017, Validity of rigid-band Approximation in the study of thermoelectric properties of p-type FeNbSb-based half-heusler compounds, J. Electron. Mater., 46, 3030, 10.1007/s11664-016-5122-0
Madsen, 2006, BoltzTraP. A code for calculating band-structure dependent quantities, Comput. Phys. Commun. Phys. Commun, 175, 67, 10.1016/j.cpc.2006.03.007
Blanco, 2004, GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model, Comput. Phys. Commun., 158, 57, 10.1016/j.comphy.2003.12.001
Momma, 2011, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr., 44, 1272, 10.1107/S0021889811038970
Rudysh, 2020, First-principles analysis of physical properties anisotropy for the Ag2SiS3 chalcogenide semiconductor, J. Alloys Compd., 826, 154232, 10.1016/j.jallcom.2020.154232
Saparov, 2010, Isolated chains in the Zintl phases Ba2ZnPn2 (pn = as, Sb, Bi); synthesis, structure, and bonding, Inorg. Chem., 49, 5173, 10.1021/ic100296x
Sun, 2017, Thermoelectric properties of AMg2X2, AZn2Sb2 (A = Ca, Sr, Ba; X = Sb, Bi), and Ba2ZnX2 (X= Sb, Bi) Zintl compounds, J. Mater. Chem., 5, 8499, 10.1039/C6TA11234J
Matta, 2007, An introduction to the quantum theory of atoms in molecules
Bader, 2003
Bader, 1984, The characterization of atomic interactions, J. Chem. Phys., 80, 1943, 10.1063/1.446956
Bader, 1981, A topological theory of molecular structure, Rep. Prog. Phys., 44, 893, 10.1088/0034-4885/44/8/002
Otero-De-La-Roza, 2014, Critic2: a program for real-space analysis of quantum chemical interactions in solids, Comput. Phys. Commun., 185, 1007, 10.1016/j.cpc.2013.10.026
Wendorff, 2005, Binary indide AInx (x = 1, 2, 4; A = Ca, Sr, Ba, K, Rb)-structural chemistry and chemical bond studies, Z. fur Anorg. Allg. Chem., 631, 338, 10.1002/zaac.200400260
Mori-Sánchez, 2002, A classification of covalent, ionic, and metallic solids based on the electron density, J. Am. Chem. Soc., 124, 14721, 10.1021/ja027708t
Ouahrani, 2012, First and second harmonic generation of the XAl2Se4 (X=Zn, Cd, Hg) defect chalcopyrite compounds, Phys. B Condens. Matter, 407, 3760, 10.1016/j.physb.2012.05.057
Espinosa, 2002, From weak to strong interactions: a comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H⋯ F–Y systems, J. Chem. Phys., 117, 5529, 10.1063/1.1501133
Zhurova, 2002, Electron density and energy density view on the atomic interactions in SrTiO3, Acta Crystallogr. B: Struct. Sci., Cryst., 58, 567, 10.1107/S0108768102009692
Zhai, 2022, Phonon transport in Zintl Ba2ZnAs2 and Ba2ZnSb2: a first-principles study, J. Mater. Sci. Semicond, 141, 106446, 10.1016/j.mssp.2021.106446
Born, 1962
Mouhat, 2014, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B, 90, 10.1103/PhysRevB.90.224104
Bedjaoui, 2016, Structural, elastic and thermodynamic properties of tetragonal and orthorhombic polymorphs of Sr2GeN2: an ab initio investigation, High Pres. Res., 36, 198, 10.1080/08957959.2016.1167202
Voigt, 1928
Reuss, 1929, Calculation of the yield strength of solid solutions based on the plasticity condition of single crystals, Math. Mech., 9, 49
Hill, 1952, The elastic behavior of a crystalline aggregate, Proc. Phys. Soc., 65, 349, 10.1088/0370-1298/65/5/307
Liu, 2011, Elasticity, electronic, chemical bonding and optical properties of monoclinic ZrO2 from first-principles, Physica B, 406, 345, 10.1016/j.physb.2010.10.057
Chen, 2015, Phase stability, structural and elastic properties of C15-type Laves transition-metal compounds MCo2 from first-principles calculations, J. Alloys Compd., 630, 202, 10.1016/j.jallcom.2015.01.038
Saha, 2016, Elastic and thermal properties of the layered thermoelectrics BiOCuSe and LaOCuSe, Phys. Rev. B, 94, 10.1103/PhysRevB.94.125209
Pugh, 1954, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Phil. Mag., 7, 823, 10.1080/14786440808520496
Saha, 2016, Elastic and thermal properties of the layered thermoelectrics BiOCuSe and LaOCuSe, Phys. Rev. B, 94, 10.1103/PhysRevB.94.125209
Anderson, 1963, A simplified method for calculating the Debye temperature from elastic constants, J. Phys. Chem. Solid., 24, 909, 10.1016/0022-3697(63)90067-2
Langenberg, 2016, Analysis of the temperature dependence of the thermal conductivity of insulating single crystal oxides, Appl. Phys. Lett. Mater., 4
Tvergaard, 1988, Microcracking in ceramics induced by thermal expansion or elastic anisotropy, J. Am. Ceram. Soc., 71, 157, 10.1111/j.1151-2916.1988.tb05022.x
Lloveras, 2008, Influence of elastic anisotropy on structural nanoscale textures, Phys. Rev. Lett., 100, 10.1103/PhysRevLett.100.165707
Taylor, 1971, Focusing of phonons in crystalline solids due to elastic anisotropy, Phys. Rev. B, 3, 1462, 10.1103/PhysRevB.3.1462
Groh, 2003, Dislocations and elastic anisotropy in heteroepitaxial metallic thin films, Phil. Mag. Lett., 83, 303, 10.1080/0950083032000069249
Li, 2002, Atomistic mechanisms governing elastic limit and incipient plasticity in crystals, Nature (London), 418, 307, 10.1038/nature00865
Ranganathan, 2008, Universal elastic anisotropy index, Phys. Rev. Lett., 101, 10.1103/PhysRevLett.101.055504
Mao, 2015, First-principles investigation on mechanical, electronic and thermodynamic properties of Mg2Sr under high pressure, J. Appl. Phys., 117, 115903, 10.1063/1.4915339
Cube, 2016, Elastic anisotropy of crystals, AIP Adv., 6
Nye, 1985
Merad Boudia, 2013, Density functional theory calculation of the optical properties and topological analysis of the electron density of MBi2B2O7 (M = Ca, Zn) compounds, J. Appl. Phys., 113, 10.1063/1.4792733
Bouhemadou, 2019, Electronic, optical, elastic, thermoelectric and thermodynamic properties of the spinel oxides ZnRh2O4 and CdRh2O4, J. Alloys Compd., 774, 299, 10.1016/j.jallcom.2018.09.338
Hamidani, 2010, Electronic and optical properties of the orthorhombic compounds PdPX (X = S and Se), Comput. Mater. Sci., 48, 115, 10.1016/j.commatsci.2009.12.017
Xi, 2012, First-principles prediction of charge mobility in carbon and organic nanomaterials, Nanoscale, 4, 4348, 10.1039/c2nr30585b
Slack, 1979, The thermal conductivity of nonmetallic crystals, Solid State Phys., 34, 1, 10.1016/S0081-1947(08)60359-8
Cahill, 1992, Lower limit to the thermal conductivity of disordered crystals, Phys. Rev. B, 46, 6131, 10.1103/PhysRevB.46.6131