Elastic, electronic, optical and thermoelectric properties of the novel Zintl-phase Ba2ZnP2

Solid State Sciences - Tập 128 - Trang 106893 - 2022
Ahlem Khireddine1, A. Bouhemadou1, S. Maabed2, S. Bin‐Omran3, R. Khenata4, Y. Al‐Douri5,6
1Laboratory for Developing New Materials and Their Characterizations, Department of Physics, Faculty of Science, University Ferhat Abbas Setif 1, Setif, 19000, Algeria
2Département des Sciences de la Matière, Faculté des sciences, Université Amar Telidji, BP 37G, Laghouat, 03000, Algeria
3Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
4Laboratoire de Physique Quantique de la Matière et de Modélisation Mathématique (LPQ3M), Université de Mascara, 29000, Mascara, Algeria
5Department of Mechatronics Engineering, Faculty of Engineering and Natural Sciences, Bahcesehir University, 34349 Besiktas, Istanbul, Turkey
6Engineering Department, American University of Iraq-Sulaimani, P.O.Box 46001, Sulaimani, Kurdistan, Iraq

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chiolerio, 2020, Waste heat to power conversion by means of thermomagnetic hydrodynamic energy harvester, Appl. Energy, 277, 115591, 10.1016/j.apenergy.2020.115591

Hidayanti, 2020, Energy harvesting system design for converting noise into electrical energy, Int. J. Adv. Sci., 29, 4791

Liu, 2020, Solar evaporation for simultaneous steam and power generation, J. Mater. Chem., 8, 513, 10.1039/C9TA12211G

Gholikhani, 2020, A critical review of roadway energy harvesting technologies, Appl. Energy, 261, 10.1016/j.apenergy.2019.114388

Kumar R, 2020, Theoretical investigation of the structural, elastic, electronic, and dielectric properties of alkali-metal-based bismuth ternary chalcogenides, Phy. Rev. Mater., 4

McGuire, 2005, Exploring thallium compounds as thermoelectric materials: seventeen new thallium chalcogenides, Chem. Mater., 17, 2875, 10.1021/cm050412c

Shuai, 2017, Recent progress and future challenges on thermoelectric Zintl materials, Mater. Today Phys., 1, 74, 10.1016/j.mtphys.2017.06.003

Chen, 2020, Q. Zhang Manipulating the intrinsic vacancies for enhanced thermoelectric performance in Eu2ZnSb2 Zintl phase, Nano Energy, 73, 10.1016/j.nanoen.2020.104771

Ren, 2018, Recent advances in inorganic material thermoelectrics, Inorg. Chem. Front., 5, 2380, 10.1039/C8QI00366A

Toberer, 2010, The Zintl compound Ca5Al2Sb6for low‐cost thermoelectric power generation, Adv. Funct. Mater., 20, 4375, 10.1002/adfm.201000970

Balvanz, 2020, New n-type Zintl phases for thermoelectrics: discovery, structural characterization, and band engineering of the compounds A2CdP2 (A = Sr, Ba, Eu), Chem. Mater., 32, 24, 10.1021/acs.chemmater.0c03960

Kunz Wille, 2019, Seebeck and figure of merit enhancement by rare earth doping in Yb14−xRExZnSb11 (x = 0.5), Materials, 12, 10.3390/ma12050731

Cheikh, 2019, Thermoelectric properties of scandium sesquitelluride, Materials, 12, 10.3390/ma12050734

Ovchinnikov, 2018, Exploratory work in the quaternary system of Ca-Eu-Cd-Sb: synthesis, crystal, and electronic structures of new Zintl solid solutions, Materials, 11, 10.3390/ma11112146

Peng, 2019, Limits of cation solubility in AMg2Sb2 (A = Mg, Ca, Sr, Ba) alloys, Materials, 12, 586, 10.3390/ma12040586

Zhang, 2020, Promising Zintl-phase thermoelectric compound SrAgSb, Chem. Mater., 32, 6983, 10.1021/acs.chemmater.0c02317

Zhang, 2020, A dual role by incorporation of magnesium in YbZn2Sb2 Zintl phase for enhanced thermoelectric performance, Adv. Energy Mater., 10, 10.1002/aenm.202001229

Zhou, 2020, Thermoelectric properties of Zintl phase YbMg2Sb2, Chem. Mater., 32, 776, 10.1021/acs.chemmater.9b04131

Brown, 2006, Yb14MnSb11: new high efficiency thermoelectric material for power generation, Chem. Mater., 18, 1873, 10.1021/cm060261t

Toberer, 2010, The Zintl compound Ca5Al2Sb6 for low‐cost thermoelectric power generation, Adv. Funct. Mater., 20, 4375, 10.1002/adfm.201000970

Chen, 2019, Zintl-phase Eu2ZnSb2: a promising thermoelectric material with ultralow thermal conductivity, Proc. Natl. Acad. Sci. U.S.A., 116, 2831, 10.1073/pnas.1819157116

Zintl, 1939, Intermetallische verbindungen (intermetallic compounds), Angew. Chem., 52, 10.1002/ange.19390520102

Kauzlarich, 2019, Advances in Zintl phases, Mater, 12, 10.3390/ma12162554

1996

Balvanz, 2020, Synthesis, structural characterization, and electronic structure of the novel Zintl phase Ba2ZnP2, Acta Crystallogr., C76, 869

Rudysh, 2020, AgGaTe2 – the thermoelectric and solar cell material: structure, electronic, optical, elastic and vibrational features, Infrared Phys. Technol., 111, 10.1016/j.infrared.2020.103476

Clark, 2005, First-principles methods using CASTEP, Z. Kristallogr., 220, 567, 10.1524/zkri.220.5.567.65075

Blaha, 2020, WIEN2k: an APW+lo program for calculating the properties of solids, J. Chem. Phys., 152, 10.1063/1.5143061

Vanderbilt, 1990, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, 41, 7892, 10.1103/PhysRevB.41.7892

Perdew, 2008, Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett., 100, 10.1103/PhysRevLett.100.136406

Monkhorst, 1976, Special points for Brillouin-zone integrations, Phys. Rev. B, 13, 10.1103/PhysRevB.13.5188

Fischer, 1992, General methods for geometry and wave function optimization, J. Phys. Chem., 96, 9768, 10.1021/j100203a036

Tran, 2009, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential, Phys. Rev. Lett., 102, 226401, 10.1103/PhysRevLett.102.226401

Koller, 2011, Merits and limits of the modified Becke-Johnson exchange potential, Phys. Rev. B, 83, 10.1103/PhysRevB.83.195134

Ambrosch-Draxl, 2006, Linear optical properties of solids within the full potential linearized augmented plane wave method, Comput. Phys. Commun., 175, 1, 10.1016/j.cpc.2006.03.005

Fang, 2017, Validity of rigid-band Approximation in the study of thermoelectric properties of p-type FeNbSb-based half-heusler compounds, J. Electron. Mater., 46, 3030, 10.1007/s11664-016-5122-0

Lee, 2012, Validity of the rigid band approximation in the study of the thermopower of narrow band gap semiconductors, Phys. Rev. B, 85, 1651491, 10.1103/PhysRevB.85.165149

Fang, 2017, Validity of rigid-band Approximation in the study of thermoelectric properties of p-type FeNbSb-based half-heusler compounds, J. Electron. Mater., 46, 3030, 10.1007/s11664-016-5122-0

Madsen, 2006, BoltzTraP. A code for calculating band-structure dependent quantities, Comput. Phys. Commun. Phys. Commun, 175, 67, 10.1016/j.cpc.2006.03.007

Blanco, 2004, GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model, Comput. Phys. Commun., 158, 57, 10.1016/j.comphy.2003.12.001

Momma, 2011, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr., 44, 1272, 10.1107/S0021889811038970

Rudysh, 2020, First-principles analysis of physical properties anisotropy for the Ag2SiS3 chalcogenide semiconductor, J. Alloys Compd., 826, 154232, 10.1016/j.jallcom.2020.154232

Saparov, 2010, Isolated chains in the Zintl phases Ba2ZnPn2 (pn = as, Sb, Bi); synthesis, structure, and bonding, Inorg. Chem., 49, 5173, 10.1021/ic100296x

Sun, 2017, Thermoelectric properties of AMg2X2, AZn2Sb2 (A = Ca, Sr, Ba; X = Sb, Bi), and Ba2ZnX2 (X= Sb, Bi) Zintl compounds, J. Mater. Chem., 5, 8499, 10.1039/C6TA11234J

Matta, 2007, An introduction to the quantum theory of atoms in molecules

Bader, 2003

Bader, 1984, The characterization of atomic interactions, J. Chem. Phys., 80, 1943, 10.1063/1.446956

Bader, 1981, A topological theory of molecular structure, Rep. Prog. Phys., 44, 893, 10.1088/0034-4885/44/8/002

Otero-De-La-Roza, 2014, Critic2: a program for real-space analysis of quantum chemical interactions in solids, Comput. Phys. Commun., 185, 1007, 10.1016/j.cpc.2013.10.026

Wendorff, 2005, Binary indide AInx (x = 1, 2, 4; A = Ca, Sr, Ba, K, Rb)-structural chemistry and chemical bond studies, Z. fur Anorg. Allg. Chem., 631, 338, 10.1002/zaac.200400260

Mori-Sánchez, 2002, A classification of covalent, ionic, and metallic solids based on the electron density, J. Am. Chem. Soc., 124, 14721, 10.1021/ja027708t

Ouahrani, 2012, First and second harmonic generation of the XAl2Se4 (X=Zn, Cd, Hg) defect chalcopyrite compounds, Phys. B Condens. Matter, 407, 3760, 10.1016/j.physb.2012.05.057

Espinosa, 2002, From weak to strong interactions: a comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H⋯ F–Y systems, J. Chem. Phys., 117, 5529, 10.1063/1.1501133

Zhurova, 2002, Electron density and energy density view on the atomic interactions in SrTiO3, Acta Crystallogr. B: Struct. Sci., Cryst., 58, 567, 10.1107/S0108768102009692

Zhai, 2022, Phonon transport in Zintl Ba2ZnAs2 and Ba2ZnSb2: a first-principles study, J. Mater. Sci. Semicond, 141, 106446, 10.1016/j.mssp.2021.106446

Born, 1962

Mouhat, 2014, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B, 90, 10.1103/PhysRevB.90.224104

Bedjaoui, 2016, Structural, elastic and thermodynamic properties of tetragonal and orthorhombic polymorphs of Sr2GeN2: an ab initio investigation, High Pres. Res., 36, 198, 10.1080/08957959.2016.1167202

Voigt, 1928

Reuss, 1929, Calculation of the yield strength of solid solutions based on the plasticity condition of single crystals, Math. Mech., 9, 49

Hill, 1952, The elastic behavior of a crystalline aggregate, Proc. Phys. Soc., 65, 349, 10.1088/0370-1298/65/5/307

Liu, 2011, Elasticity, electronic, chemical bonding and optical properties of monoclinic ZrO2 from first-principles, Physica B, 406, 345, 10.1016/j.physb.2010.10.057

Chen, 2015, Phase stability, structural and elastic properties of C15-type Laves transition-metal compounds MCo2 from first-principles calculations, J. Alloys Compd., 630, 202, 10.1016/j.jallcom.2015.01.038

Saha, 2016, Elastic and thermal properties of the layered thermoelectrics BiOCuSe and LaOCuSe, Phys. Rev. B, 94, 10.1103/PhysRevB.94.125209

Pugh, 1954, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Phil. Mag., 7, 823, 10.1080/14786440808520496

Saha, 2016, Elastic and thermal properties of the layered thermoelectrics BiOCuSe and LaOCuSe, Phys. Rev. B, 94, 10.1103/PhysRevB.94.125209

Anderson, 1963, A simplified method for calculating the Debye temperature from elastic constants, J. Phys. Chem. Solid., 24, 909, 10.1016/0022-3697(63)90067-2

Langenberg, 2016, Analysis of the temperature dependence of the thermal conductivity of insulating single crystal oxides, Appl. Phys. Lett. Mater., 4

Tvergaard, 1988, Microcracking in ceramics induced by thermal expansion or elastic anisotropy, J. Am. Ceram. Soc., 71, 157, 10.1111/j.1151-2916.1988.tb05022.x

Lloveras, 2008, Influence of elastic anisotropy on structural nanoscale textures, Phys. Rev. Lett., 100, 10.1103/PhysRevLett.100.165707

Taylor, 1971, Focusing of phonons in crystalline solids due to elastic anisotropy, Phys. Rev. B, 3, 1462, 10.1103/PhysRevB.3.1462

Groh, 2003, Dislocations and elastic anisotropy in heteroepitaxial metallic thin films, Phil. Mag. Lett., 83, 303, 10.1080/0950083032000069249

Li, 2002, Atomistic mechanisms governing elastic limit and incipient plasticity in crystals, Nature (London), 418, 307, 10.1038/nature00865

Ranganathan, 2008, Universal elastic anisotropy index, Phys. Rev. Lett., 101, 10.1103/PhysRevLett.101.055504

Mao, 2015, First-principles investigation on mechanical, electronic and thermodynamic properties of Mg2Sr under high pressure, J. Appl. Phys., 117, 115903, 10.1063/1.4915339

Chung, 1967, The elastic anisotropy of crystals, J. Appl. Phys., 38, 2010, 10.1063/1.1709819

Cube, 2016, Elastic anisotropy of crystals, AIP Adv., 6

Nye, 1985

Merad Boudia, 2013, Density functional theory calculation of the optical properties and topological analysis of the electron density of MBi2B2O7 (M = Ca, Zn) compounds, J. Appl. Phys., 113, 10.1063/1.4792733

Bouhemadou, 2019, Electronic, optical, elastic, thermoelectric and thermodynamic properties of the spinel oxides ZnRh2O4 and CdRh2O4, J. Alloys Compd., 774, 299, 10.1016/j.jallcom.2018.09.338

Hamidani, 2010, Electronic and optical properties of the orthorhombic compounds PdPX (X = S and Se), Comput. Mater. Sci., 48, 115, 10.1016/j.commatsci.2009.12.017

Xi, 2012, First-principles prediction of charge mobility in carbon and organic nanomaterials, Nanoscale, 4, 4348, 10.1039/c2nr30585b

Slack, 1979, The thermal conductivity of nonmetallic crystals, Solid State Phys., 34, 1, 10.1016/S0081-1947(08)60359-8

Cahill, 1992, Lower limit to the thermal conductivity of disordered crystals, Phys. Rev. B, 46, 6131, 10.1103/PhysRevB.46.6131

Mishra, 1997, Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide, J. Phys. Condens. Matter, 9, 461, 10.1088/0953-8984/9/2/014