Elastic cloaking theory
Tóm tắt
Từ khóa
Tài liệu tham khảo
Milton, 2006, On cloaking for elasticity and physical equations with a transformation invariant form, New J. Phys., 8, 248, 10.1088/1367-2630/8/10/248
Schurig, 2006, Metamaterial electromagnetic cloak at microwave frequencies, Science, 314, 977, 10.1126/science.1133628
Greenleaf, 2003, On nonuniqueness for Calderon's inverse problem, Math. Res. Lett., 10, 685, 10.4310/MRL.2003.v10.n5.a11
Chen, 2007, Acoustic cloaking in three dimensions using acoustic metamaterials, Appl. Phys. Lett., 91, 183518+, 10.1063/1.2803315
Cummer, 2008, Scattering theory derivation of a 3D acoustic cloaking shell, Phys. Rev. Lett., 100, 024301+, 10.1103/PhysRevLett.100.024301
Greenleaf, 2007, Full-wave invisibility of active devices at all frequencies, Commun. Math. Phys., 275, 749, 10.1007/s00220-007-0311-6
Milton, 1995, Which elasticity tensors are realizable?, J. Eng. Mater. Technol., 117, 483, 10.1115/1.2804743
Milton, 2001
Cai, 2007, Analysis of Cummer–Schurig acoustic cloaking, New J. Phys., 9, 450+, 10.1088/1367-2630/9/12/450
Cummer, 2008, Material parameters and vector scaling in transformation acoustics, New J. Phys., 10, 115025+, 10.1088/1367-2630/10/11/115025
Cheng, 2008, A multilayer structured acoustic cloak with homogeneous isotropic materials, Appl. Phys. Lett., 92, 151913+, 10.1063/1.2903500
Norris
Pendry, 2008, An acoustic metafluid: realising a broadband acoustic cloak, New J. Phys., 10, 115032+, 10.1088/1367-2630/10/11/115032
Torrent, 2008, Acoustic cloaking in two dimensions: a feasible approach, New J. Phys., 10, 063015+, 10.1088/1367-2630/10/6/063015
Chen, 2010, Acoustic cloaking and transformation acoustics, J. Phys. D, 43, 113001+, 10.1088/0022-3727/43/11/113001
Norris, 2010, Acoustic metafluids made from three acoustic fluids, J. Acoust. Soc. Am., 128, 1606, 10.1121/1.3479022
Hu
Scandrett, 2010, Acoustic cloaking using layered pentamode materials, J. Acoust. Soc. Am., 127, 2856, 10.1121/1.3365248
Milton, 2007, On modifications of Newton's second law and linear continuum elastodynamics, Proc. R. Soc. A, 463, 855, 10.1098/rspa.2006.1795
Brun, 2009, Achieving control of in-plane elastic waves, Appl. Phys. Lett., 94, 061903, 10.1063/1.3068491
Cosserat, 1909
Farhat, 2009, Cloaking bending waves propagating in thin elastic plates, Phys. Rev. B, 79, 033102+, 10.1103/PhysRevB.79.033102
Thomson, 1856, Elements of a mathematical theory of elasticity, Philos. Trans. R. Soc. Lond., 146, 481, 10.1098/rstl.1856.0022
Norris, 2010, Wave impedance matrices for cylindrically anisotropic radially inhomogeneous elastic materials, Q. J. Mech. Appl. Math., 63, 1, 10.1093/qjmam/hbq010
Shuvalov, 2003, A sextic formalism for three-dimensional elastodynamics of cylindrically anisotropic radially inhomogeneous materials, Proc. R. Soc. A, 459, 1611, 10.1098/rspa.2002.1075
Lothe, 1976, On the existence of surface-wave solutions for anisotropic elastic half-spaces with free surface, J. Appl. Phys., 47, 428, 10.1063/1.322665
Pease, 1965
Ogden, 2007, Incremental Statics and Dynamics of Pre-stressed Elastic Materials, volume 495 of Waves in Nonlinear Pre-Stressed Materials: CISM International Centre for Mechanical Sciences, Chapter 1, 1