Elastic and magnetic properties of Tb-MnO based thin films
Tài liệu tham khảo
Song, 2019, Lattice and spin dynamics in multiferroic BiFeO3 and RMnO3, Natl. Sci. Rev., 6, 642, 10.1093/nsr/nwz055
Prinz, 1998, Magnetoelectronics, Science, 282, 1660, 10.1126/science.282.5394.1660
Chappert, 2007, The emergence of spin electronics in data storage, Nat. Mater., 6, 813, 10.1038/nmat2024
Y. Zhou, J-W. Kim, S. Dong, S. J. Priya, J. Wang, and J. Ryu, ‘Applications of multiferroic magnetoelectric composites. In Multiferroic Materials: Properties, Techniques, and Applications,’ pp. 215-257, 2016, 10.1201/9781315372532-9.
Aytan, 2017, Spin-phonon coupling in antiferromagnetic nickel oxide, Appl. Phys. Lett., 11, 1
Park, 2014, Structure and spin dynamics of multiferroic BiFeO3, J. Phys.: Condens. Matter, 26, 1
Raut, 2020, Spin–phonon interaction and magnetoelastic coupling associated with unusual cluster-glass states in YFe0.9Cr0.1O3, J. Magn. Magn. Mater., 529, 1
B. Poojitha, A. Rathore, A. Kumar, and S. Saha, ‘Signatures of magnetostriction and spin-phonon coupling in magnetoelectric hexagonal 15R-BaMnO3,’ Phys. Rev. B, vol. 102, no. 13, 2020, 10.1103/PhysRevB.102.134436.
Son, 2019, Unconventional spin-phonon coupling via the Dzyaloshinskii-Moriya interaction, npj Quantum Mater., 4, 1, 10.1038/s41535-019-0157-0
Mishra, 2020, Phonon and magnetoelastic coupling in Al0.5Ga0.5FeO3: Raman, magnetization and neutron diffraction studies, Phys. Chem. Chem. Phys., 22, 6906, 10.1039/C9CP06124J
M. K. Kharrasov, I. R. Kyzyrgulov, I. F. Sharafullin, A.G. Nugumanov, The correlations between dynamic interactions in antiferromagnetic multiferroics, Solid State Phenomena, vol. 233 – 234, pp. 383–387, 10.4028/www.scientific.net/SSP.233-234.383.
Ma, 2011, Recent progress in multiferroic magnetoelectric composites: From bulk to thin films, Adv. Mater., 23, 1062, 10.1002/adma.201003636
Wang, 2010, Multiferroic magnetoelectric composite nanostructures, NPG Asia Mater., 2, 61, 10.1038/asiamat.2010.32
Zavaliche, 2007, Electrically assisted magnetic recording in multiferroic nanostructures, Nano Lett., 7, 1586, 10.1021/nl070465o
Li, 2010, A magnetoelectric memory cell with coercivity state as writing data bit, Appl. Phys. Lett., 96
Park, 2004, Electric polarization reversal and memory in a multiferroic material induced by magnetic fields, Nature, 429, 392, 10.1038/nature02572
Kimura, 2003, Magnetic control of ferroelectric polarization, Nature, 426, 55, 10.1038/nature02018
Ramana, 2019, The growth and improved magnetoelectric response of strain-modified Aurivillius SrBi4.25La0.75Ti4FeO18 thin films, Dalt. Trans., 48, 13224, 10.1039/C9DT01667H
S.G. Bahoosh, Microscopic modeling of multiferroic bulk systems, thin films and nanostructures, PhD. Thesis, Martin-Luther-Universit¨at Halle-Wittenberg, 2013, 10.25673/1006.
G. Lawes, G. Srinivasan, Introduction to magnetoelectric coupling and multiferroic films, J. Phys. D. Appl. Phys., vol. 44, no. 24, 2011, 10.1088/0022-3727/44/24/243001.
Claudio, 2019, Editorial: the role of non-stoichiometry in the functional properties of oxide materials, Front. Chem., 7, 1
Yun, 2020, Achieving ferromagnetic insulating properties in La0.9Ba0.1MnO3 thin films through nanoengineering, Journal of Royal Society of Chemistry, 12, 9255
T. Shimada, T. Matsui, T. Xu, K. Arisue, Y. Zhang, J. Wang, T. Kitamura1, Multiferroic nature of intrinsic point defects in BiFeO3: a hybrid Hartree-Fock density functional study, Am. Phys. Soc., 93, pp. 1–10, 2016, 10.1103/PhysRevB.93.174107.
R.A.P. Ribeiro, E. Longo, J. Andrés, S.R. de Lazaro, ‘A DFT investigation of the role of oxygen vacancies on the structural, electronic and magnetic properties of ATiO3 (A = Mn, Fe, Ni) multiferroic materials, J. R. Soc. Chem., 20 (45), pp. 28382–28392, 2018, 10.1039/C8CP04443K.
Li, 2020, Hexagonal rare-earth manganites and ferrites: a review of improper ferroelectricity, magnetoelectric coupling, and unusual domain walls, J. R. Soc. Chem., 22, 14415
Aditi, 2008, Signature of Jahn-Teller distortion and oxygen stoichiometry in raman spectra of epitaxial LaMnO3±δ thin films, J. Appl. Phys., 104, 113530, 10.1063/1.3040718
Herklotz, 2017, Strain coupling of oxygen non-stoichiometry in perovskite thin films, J. Phys.: Condens. Matter, 29, 1
Nix, 1989, Mechanical properties of thin films, Metall. Mater. Trans., 20, 1
J. Zhao, Z. Chi, Z. Yang, X. Chen, M. S. Arnold, Y. Zhang, J. Xu, Z. Chi, M.P. Aldreda Recent developments of truly stretchable thin film electronic and optoelectronic devices, R. Soc. Chem., pp. 5764–5792, 2018, 10.1039/C7NR09472H.
Hebb, 1998, The effect of patterns on thermal stress during rapid thermal processing of silicon wafers, IEEE Trans. Semicond. Manuf., 11, 99, 10.1109/66.661289
Doerner, 1986, A method for interpreting the data from depth-sensing indentation instruments, J. Mater. Res., 1, 601, 10.1557/JMR.1986.0601
Zizka, 2018, Acoustic phonons and mechanical properties of ultra-thin porous low-k films: a surface Brillouin scattering study, J. Electron. Mater., 47, 3942, 10.1007/s11664-018-6276-8
M. Yasaka, X-ray thin-film measurement techniques, Rigaku J., 26 (2) 2010.
Every, 2016, Optimized determination of elastic constants of crystals and their uncertainties from surface Brillouin scattering, Ultrasonics, 69, 273, 10.1016/j.ultras.2016.02.004
L.M. Kotane, J.D. Comins, A.G. Every, J.R. Botha, Surface Brillouin scattering measurement of the elastic constants of single crystal InAs0.91Sb0.09, J. Phys. Conf. Ser., vol. 278, no. 1, 2011, 10.1088/1742-6596/278/1/012001.
G. Carlotti, Elastic characterization of transparent and opaque films, multilayers and acoustic resonators by surface Brillouin scattering: a review, Appl. Sci., vol. 8, no. 1, 2018, 10.3390/app8010124.
Motochi, 2017, Surface Brillouin scattering observation of higher order resonances in annealed, ion-implanted CVD diamond, Diam. Relat. Mater., 76, 171, 10.1016/j.diamond.2017.04.017
Wang, 2019, Dynamic magnetic properties and spin pumping in polymer-assisted-deposited La0.92MnO3 thin films, J. Mater. Chem. C, 7, 12633, 10.1039/C9TC04008K
Sumanya, 2017, Surface Brillouin scattering in titanium carbide films, Wave Motion, 68, 78, 10.1016/j.wavemoti.2016.08.011
Chason, 2019, Kinetic Monte Carlo simulations of stress and morphology evolution in polycrystalline thin films, J. Appl. Phys., 125, 1
Lee, 2020, Temperature dependence of elastic and plastic deformation behavior of a refractory high-entropy alloy, Sci. Adv., 6, eaaz4748, 10.1126/sciadv.aaz4748
G. I. Kanel, V.E. Fortov, S.V. Razorenov, Shock-wave phenomena and the properties of condensed matter, pp. 111 – 177, 2004, 10.1007/978-1-4757-4282-4.
Torabi, 2013, The equivalent material concept: application to failure of O-notches, Eng. Solid Mech., 1, 129, 10.5267/j.esm.2013.09.005
Liu, 2020, Theoretical and experimental studies of the structural, phase stability and elastic properties of AlCrTiFeNi multi-principle element alloy, Materials (Basel), 13, 1, 10.3390/ma13194353
Chen, 2015, Phase stability, structural and elastic properties of C15-type Laves transition-metal compounds MnCo2 from first-principles calculations, J. Alloys Compd., 630, 202, 10.1016/j.jallcom.2015.01.038
Li, 2016, Structural and anisotropic elastic properties of hexagonal MP (M = Ti, Zr, Hf) monophosphides determined by first-principles calculations, Philos. Mag., 96, 3654, 10.1080/14786435.2016.1234081
Hadi, 2016, First-principles prediction of mechanical and bonding characteristics of new T2 superconductor Ta5GeB2, Phys. Status Solidi Basic Res., 253, 2020, 10.1002/pssb.201600209
Kuria, 2020, Surface Brillouin scattering study of tantalum nitride (TaN) thin films, J. Optical Soc. Am. A, 37, 125, 10.1364/JOSAA.398746
Polisetty, 2008, Temperature dependence of the training effect in exchange coupled ferromagnetic bilayers, Phys. Rev. B, 78, 1
Tlili, 2009, Magnetic, electrical properties and spin-glass effect of substitution of Ca for Pr in Ca2-xPrxMnO4 compounds, Open Surface Sci. J., 1, 54, 10.2174/1876531900901010054
Hong, 2002, Role of rare earth ion in spin glass behavior for R0.7Sr1.3MnO4, Chem. Mater., 14, 1832, 10.1021/cm0115618
Nordblad, 2013, Competing interaction in magnets: the root of ordered disorder or only frustration?, Phys. Scr., 88, 1, 10.1088/0031-8949/88/05/058301