Elastic Waves Trapped by a Semi-infinite Strip with Clamped Lateral Sides and a Curved or Broken End
Tóm tắt
Several geometric conditions for trapping elastic waves by a homogeneous isotropic strip having one or two clamped lateral sides and an arbitrarily curved end face are considered. Resonator shapes that provide any predetermined number of linearly independent trapped modes are found.
Tài liệu tham khảo
S. A. Nazarov, “Two-dimensional asymptotic models of thin cylindruical elastic gaskets,” Differ. Eqations 58 (12), 1651–1667 (2022).
O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics (Springer, New York, 1985).
G. Fichera, Theorems in the Theory of Elasticity. Handbuch der Physic (Springer, Berlin, 1972).
M. Sh. Birman and M. Z. Solomyak, Spectral Theory of Selfadjoint Operators in Hilbert Space (Reidel, Dordrecht, 1987).
I. V. Kamotskii and S. A. Nazarov, “On eigenfunctions localized in a neighborhood of the lateral surface of a thin domain,” J. Math. Sci. 101 (2), 2941–2974 (2000).
V. A. Kondrat’ev, “Boundary problems for elliptic equations in domains with conical or angular points,” Trans. Moscow Math. Soc. 16, 227–313 (1967).
S. A. Nazarov and B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries (Walter de Gruyter Berlin, New York, 1994).
S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary-value problems and the algebraic description of their attributes,” Russ. Math. Surv. 54 (5), 947–1014 (1999).
I. V. Kamotskii and S. A. Nazarov, “Exponentially decreasing solutions of the problem of diffraction by a rigid periodic boundary,” Math. Notes 73 (1–2), 129–131 (2003).
S. A. Nazarov, “Variational and asymptotic methods for finding eigenvalues below the continuous spectrum threshold,” Sib. Math. J. 51 (5), 866–878 (2010).
S. Molchanov and B. Vainberg, “Scattering solutions in networks of thin fibers: small diameter asymptotics,” Comm. Math. Phys. 273 (2), 533–559 (2007).
D. Grieser, “Spectra of graph neighborhoods and scattering,” Proc. London Math. Soc. 97 (3), 718–752 (2008).
S. A. Nazarov, “Threshold resonances and virtual levels in the spectrum of cylindrical and periodic waveguides,” Math. Izv. 84 (6), 1105–1180 (2020).
W. G. Mazja, S. A. Nasarow, and B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten (Akademie, Berlin, 1991), Vols. 1, 2.
S. A. Nazarov, Asymptotic Theory of Thin Plates and Rods. Dimension Reduction and Integral Bounds (Nauchnaya kniga, Novosibirsk, 2002) [in Russian].
S. A. Nazarov, “Elastic waves trapped by a homogeneous anisotropic semicylinder,” Sb. Math. 204 (11), 1639–1670 (2013).
S. A. Nazarov, “The localization for eigenfunctions of the Dirichlet problem in thin polyhedra near the vertices,” Sib. Math. J. 54 (3), 517–532 (2013).
V. M. Babich and V. S. Buldyrev, Asymptotic Methods in Short-Wavelength Diffraction Theory (Alpha Sci. Int., 2009).
S. G. Mikhlin, Variational Methods in Mathematical Physics (Pergamon, New York, 1964).
A. Campbell, S. A. Nazarov, and G. H. Sweers, “Spectra of two-dimensional models for thin plates with sharp edges,” SIAM J. Math. Anal. 42 (6), 3020–3044 (2010).