Phát triển kiến trúc của micelle thích ứng với pH với khả năng thẩm thấu và hoạt tính diệt khuẩn được tăng cường trong biofilm

Journal of Nanobiotechnology - Tập 19 Số 1 - 2021
Rong Guo1, Keke Li1, Baocheng Tian1, Changrong Wang1, Xiangjun Chen1, Xinyu Jiang1, Huayu He1, Wei Hong1
1School of Pharmacy, Shandong New Drug Loading and Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, People’s Republic of China

Tóm tắt

Tóm tắtNền tảngHình thành biofilm là một trong những lý do chính gây ra những nhiễm trùng vi khuẩn dai dẳng. Gần đây, các copolymer nhạy cảm với pH đã thu hút sự chú ý đáng kể để giải quyết các nhiễm trùng liên quan đến biofilm. Tuy nhiên, việc kết hợp đúng các đoạn nhạy cảm với pH trong chuỗi polymer, có thể ảnh hưởng đáng kể đến khả năng nhắm mục tiêu biofilm, chưa được nghiên cứu đặc biệt. Trong nghiên cứu này, chúng tôi đã tổng hợp ba loại copolymer nhạy cảm với pH dựa trên poly(β-amino ester) (PAE), poly(lactic-co-glycolic acid) (PLA) và polyethylene glycol (PEG), bao gồm PAE-PLA-mPEG (A-L-E), PLA-PAE-mPEG (L-A-E) và PLA-PEG-PAE (L-E-A) để giải quyết vấn đề này.Kết quảCả ba copolymer đều có thể tự lắp ráp thành micelle (MA-L-E, ML-A-E và ML-E-A) trong môi trường nước. So với MA-L-E và ML-A-E, việc đặt PAE ở đầu PEG xa trong PLA-PEG tạo ra PLA-PEG-PAE (ML-E-A) được xác định bằng cách kích hoạt pH thích hợp, thâm nhập hoàn toàn vào biofilm và có độ gắn kết màng tế bào cao. Khi được nạp thêm Triclosan (TCS), ML-E-A/TCS có thể hiệu quả tiêu diệt vi khuẩn cả trong môi trường nổi và dạng biofilm. Chúng tôi lý luận rằng các đoạn PAE sẽ được đặt gần bề mặt và xa các đoạn PLA kỵ nước. Điều này sẽ tăng cường khả năng thay đổi độ tải bề mặt, vì PAE+ có thể dễ dàng tách ra khỏi lõi bên trong mà không bị ảnh hưởng bởi lực kỵ nước bổ sung từ liên kết hóa trị với các đoạn PLA, và nhanh chóng nổi lên lớp bề mặt ngoài cùng của micelle do tính ưa nước tương đối. Điều này là quan trọng vì nó cho phép micelle ngay lập tức thay đổi độ tải bề mặt khi có độ axit tập trung xảy ra, và liên kết hiệu quả với bề mặt vi khuẩn nơi chúng bị thủy phân bởi lipase vi khuẩn để kích thích giải phóng TCS đã được bọc thậm chí chỉ trong một thời gian ngắn để ngăn chặn sự rửa trôi nhanh chóng. Hiệu suất điều trị In vivo của ML-E-A/TCS đã được đánh giá trên mô hình nhiễm khuẩn biofilm cổ điển, nhiễm khuẩn biofilm liên quan đến implant. Kết quả cho thấy ML-E-A/TCS có hiệu quả trong việc điều trị nhiễm khuẩn biofilm liên quan đến implant, điều này được chứng minh bởi việc làm sạch hiệu quả các catheter bị ô nhiễm biofilm và phục hồi các mô xung quanh bị nhiễm.Kết luậnTóm lại, việc phát triển kiến trúc của các copolymer nhạy cảm với pH là bước đầu tiên để nhắm tới biofilm. Cấu trúc ML-E-A có thể đại diện cho một hướng đi thú vị trong tương lai trong điều trị các nhiễm trùng liên quan đến biofilm có liên quan đến độ axit.Tóm tắt đồ họa

Từ khóa


Tài liệu tham khảo

Lewis K. Persister cells, dormancy and infectious disease. Nat Rev Microbiol. 2007;5(1):48–56.

Romling U, Balsalobre C. Biofilm infections, their resilience to therapy and innovative treatment strategies. J Intern Med. 2012;272(6):541–61.

Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):1318–22.

Fux CA, Costerton JW, Stewart PS, Stoodley P. Survival strategies of infectious biofilms. Trends Microbiol. 2005;13(1):34–40.

Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8(9):623–33.

Beloin C, Renard S, Ghigo JM, Lebeaux D. Novel approaches to combat bacterial biofilms. Curr Opin Pharmacol. 2014;18:61–8.

Baker P, Hill PJ, Snarr BD, Alnabelseya N, Pestrak MJ, Lee MJ, Jennings LK, Tam J, Melnyk RA, Parsek MR, Sheppard DC, Wozniak DJ, Howell PL. Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms. Sci Adv. 2016;2(5):e1501632.

Hu D, Li H, Wang B, Ye Z, Lei W, Jia F, Jin Q, Ren KF, Ji J. Surface-adaptive gold nanoparticles with effective adherence and enhanced photothermal ablation of methicillin-resistant Staphylococcus aureus biofilm. ACS Nano. 2017;11(9):9330–9.

Liu Y, Ren Y, Li Y, Su L, Zhang Y, Huang F, Liu J, Liu J, van Kooten TG, An Y, Shi L, van der Mei HC, Busscher HJ. Nanocarriers with conjugated antimicrobials to eradicate pathogenic biofilms evaluated in murine in vivo and human ex vivo infection models. Acta Biomater. 2018;79:331–43.

Tian S, Su L, Liu Y, Cao J, Yang G, Ren Y, Huang F, Liu J, An Y, van der Mei HC, Busscher HJ, Shi L. Self-targeting, zwitterionic micellar dispersants enhance antibiotic killing of infectious biofilms—an intravital imaging study in mice. Sci Adv. 2020;6(33):eabb1112.

Liu Y, Mei HCVD, Zhao B, Zhai Y, Cheng T, Li Y, Zhang Z, Busscher HJ, Ren Y, Shi L. Eradication of multidrug-resistant staphylococcal infections by light-activatable micellar nanocarriers in a murine model. Adv Funct Mater. 2017;27:1701974.

Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polymeric nanospheres. Science. 1994;263(5153):1600–3.

Lin MH, Hung CF, Aljuffali IA, Sung CT, Huang CT, Fang JY. Cationic amphiphile in phospholipid bilayer or oil–water interface of nanocarriers affects planktonic and biofilm bacteria killing. Nanomedicine. 2017;13(2):353–61.

Mamusa M, Sitia L, Barbero F, Ruyra A, Calvo TD, Montis C, Gonzalez-Paredes A, Wheeler GN, Morris CJ, McArthur M, Berti D. Cationic liposomal vectors incorporating a bolaamphiphile for oligonucleotide antimicrobials. Biochim Biophys Acta Biomembr. 2017;1859(10):1767–77.

Ng VW, Ke X, Lee AL, Hedrick JL, Yang YY. Synergistic co-delivery of membrane-disrupting polymers with commercial antibiotics against highly opportunistic bacteria. Adv Mater. 2013;25(46):6730–6.

Wang J, Byrne JD, Napier ME, DeSimone JM. More effective nanomedicines through particle design. Small. 2011;7(14):1919–31.

Hama S, Itakura S, Nakai M, Nakayama K, Morimoto S, Suzuki S, Kogure K. Overcoming the polyethylene glycol dilemma via pathological environment-sensitive change of the surface property of nanoparticles for cellular entry. J Control Release. 2015;206:67–74.

Gao Y, Wang J, Chai M, Li X, Deng Y, Jin Q, Ji J. Size and charge adaptive clustered nanoparticles targeting the biofilm microenvironment for chronic lung infection management. ACS Nano. 2020;14(5):5686–99.

Davies DG, Marques CN. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol. 2009;191(5):1393–403.

Simmen HP, Blaser J. Analysis of pH and pO2 in abscesses, peritoneal fluid, and drainage fluid in the presence or absence of bacterial infection during and after abdominal surgery. Am J Surg. 1993;166(1):24–7.

Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991–1003.

Hu J, Zhang G, Liu S. Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels. Chem Soc Rev. 2012;41(18):5933–49.

Li LL, Xu JH, Qi GB, Zhao X, Yu F, Wang H. Core-shell supramolecular gelatin nanoparticles for adaptive and “on-demand” antibiotic delivery. ACS Nano. 2014;8(5):4975–83.

Liu Y, Busscher HJ, Zhao B, Li Y, Zhang Z, van der Mei HC, Ren Y, Shi L. Surface-adaptive, antimicrobially loaded, micellar nanocarriers with enhanced penetration and killing efficiency in Staphylococcal biofilms. ACS Nano. 2016;10(4):4779–89.

Radovic-Moreno AF, Lu TK, Puscasu VA, Yoon CJ, Langer R, Farokhzad OC. Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano. 2012;6(5):4279–87.

Hong W, Chen D, Zhang X, Zeng J, Hu H, Zhao X, Qiao M. Reversing multidrug resistance by intracellular delivery of Pluronic(R) P85 unimers. Biomaterials. 2013;34(37):9602–14.

Ma QQ, Dong N, Shan AS, Lv YF, Li YZ, Chen ZH, Cheng BJ, Li ZY. Biochemical property and membrane–peptide interactions of de novo antimicrobial peptides designed by helix-forming units. Amino Acids. 2012;43(6):2527–36.

Dong N, Ma Q, Shan A, Lv Y, Hu W, Gu Y, Li Y. Strand length-dependent antimicrobial activity and membrane-active mechanism of arginine- and valine-rich beta-hairpin-like antimicrobial peptides. Antimicrob Agents Chemother. 2012;56(6):2994–3003.

Chintakunta R, Buaron N, Kahn N, Moriah A, Lifshiz R, Goldbart R, Traitel T, Tyler B, Brem H, Kost J. Synthesis, characterization, and self-assembly with plasmid DNA of a quaternary ammonium derivative of pectic galactan and its fluorescent labeling for bioimaging applications. Carbohydr Polym. 2016;150:308–18.

Lynn DM, Amiji MM, Langer R. pH-responsive polymer microspheres: rapid release of encapsulated material within the range of intracellular pH. Angew Chem Int Ed Engl. 2001;40(9):1707–10.

Gao GH, Im GH, Kim MS, Lee JW, Yang J, Jeon H, Lee JH, Lee DS. Magnetite-nanoparticle-encapsulated pH-responsive polymeric micelle as an MRI probe for detecting acidic pathologic areas. Small. 2010;6(11):1201–4.

Liu D, Liu F, Song YK. Recognition and clearance of liposomes containing phosphatidylserine are mediated by serum opsonin. Biochim Biophys Acta. 1995;1235(1):140–6.

Chen M, Wei J, Xie S, Tao X, Zhang Z, Ran P, Li X. Bacterial biofilm destruction by size/surface charge-adaptive micelles. Nanoscale. 2019;11(3):1410–22.

Tseng BS, Zhang W, Harrison JJ, Quach TP, Song JL, Penterman J, Singh PK, Chopp DL, Packman AI, Parsek MR. The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin. Environ Microbiol. 2013;15(10):2865–78.

Chen M, Xie S, Wei J, Song X, Ding Z, Li X. Antibacterial micelles with vancomycin-mediated targeting and pH/lipase-triggered release of antibiotics. ACS Appl Mater Interfaces. 2018;10(43):36814–23.

Xiong MH, Bao Y, Yang XZ, Wang YC, Sun B, Wang J. Lipase-sensitive polymeric triple-layered nanogel for “on-demand” drug delivery. J Am Chem Soc. 2012;134(9):4355–62.

Azzopardi EA, Ferguson EL, Thomas DW. The enhanced permeability retention effect: a new paradigm for drug targeting in infection. J Antimicrob Chemother. 2013;68(2):257–74.

Yueh MF, Taniguchi K, Chen S, Evans RM, Hammock BD, Karin M, Tukey RH. The commonly used antimicrobial additive triclosan is a liver tumor promoter. Proc Natl Acad Sci USA. 2014;111(48):17200–5.