Eigenvalues of Set-Valued Operators in Banach Spaces

Set-Valued Analysis - Tập 13 Số 1 - Trang 1-19 - 2005
Rafaël Correa1, Pedro Gajardo1
1Centro de Modelamiento Matemático and Departamento de Ingeniería Matemática, Universidad de Chile, Casilla 170/3, Santiago, Chile

Tóm tắt

Từ khóa


Tài liệu tham khảo

Amann, H.: Lusternik–Schnirelman theory and nonlinear eigenvalue problems, Math. Ann. 199 (1972), 55–72.

Attouch, H.: Variational Convergences for Functions and Operators, Appl. Math. Ser., Pitman, London, 1984.

Aubin, J. P., Frankowska, H. and Olech, C.: Controllability of convex processes, J. Control Optim. 24 (1986), 1192–1211.

Aubin, J. P. and Frankowska, H.: Set-Valued Analysis, Birkhäuser, Boston, 1990.

Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei, Bucaresti, Romania, 1976.

Benci, V. and Micheletti, A. M.: Su un problema di autovalori per disequazioni variazionali, Ann. Mat. Pura Appl. 107 (1975), 359–371.

Browder, F. E.: Variational methods for nonlinear elliptic eigenvalue problems, Bull. Amer. Math. Soc. 69 (1965), 862–874.

Browder, F. E.: Nonlinear eigenvalues problems and Galerkin approximations, Bull. Amer. Math. Soc. 74 (1968), 651–656.

Burachik, R. S., Iusem, A. N. and Svaiter, B. F.: Enlargement of monotone operators with applications variational inequalities, Set-Valued Anal. 5 (1997), 159–180.

Correa, R. and Seeger, A.: Eigenvalue localization for multivalued operators, In: Lecture Notes in Econom. and Math. Systems 481, Springer, New York, 2000, pp. 111–118.

Gajardo, P. and Seeger, A.: Epsilon-eigenvalues of multivalued operators, Set-Valued Anal. 11 (2003), 273–296.

Harrabi, A.: Pseudospectre d’une suite d’operateurs bornés, Modélisation Math. Anal. Numérique 32 (1998), 671–680.

Ioffe, A. D.: Nonsmooth analysis: Differential calculus of nondifferential mappings, Trans. Amer. Math. Soc. 266 (1981), 1–56.

Landau, H. J.: On Szego’s eigenvalue distribution theorem and non-Hermitian kernels, J. Anal. Math. 28 (1975), 335–357.

Landau, H. J.: The notion of approximate eigenvalues applied to an integral equation of laser theory, Quart. Appl. Math. 35 (1977), 165–172.

Lavilledieu, P. and Seeger, A.: Eigenvalue stability for multivalued operators, Topol. Methods Nonlinear Anal. 15 (2000), 115–128.

Lavilledieu, P. and Seeger, A.: Existence de valeurs propes pour les systèmes multivoques: Résultats anciens et nouveaux, Ann. Math. Quebec 25(1) (2001), 47–70.

Leizarowitz, A.: Eigenvalues of convex processes and convergences properties of differential inclusions, Set-Valued Anal. 2 (1994), 505–527.

Lusternik, L. and Schnirelman, L.: Méthodes topologiques dans les problemes variationels, Actualités Sci. Indust. 188 (1934).

Megginson, E.: An Introduction to Banach Space Theory, Springer, New York, 1991.

Phelps, R. R.: Convex Functions, Monotone Operators, and Differentiability, Lecture Notes in Math. 1364, Springer, New York, 1989.

Reichel, L. and Trefethen, L. N.: Eigenvalues and pseudo-eigenvalues of Toeplitz matrices, Linear Algebra Appl. 162 (1992), 153–185.

Rockaffellar, R. T.: Convex Analysis, Princeton Univ. Press, 1970.

Rockaffellar, R. T. and Wets, R. J.-B.: Variational Analysis, Springer, New York, 1996.

Seeger, A.: Spectral analysis of set-valued mappings, Acta Math. Vietnam 23 (1998).

Seeger, A.: Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions, Linear Algebra Appl. 292 (1999), 1–14.

Trefethen, L. N.: Pseudospectra of linear operators, SIAM Rev. 39 (1997), 383–406.