Eigenvalues for double phase variational integrals
Tóm tắt
Từ khóa
Tài liệu tham khảo
Acerbi, E., Mingione, G.: Regularity results for a class of functionals with nonstandard growth. Arch. Ration. Mech. Anal. 156, 121–140 (2001)
Acerbi, E., Mingione, G.: Regularity results for a class of quasiconvex functionals with nonstandard growth. Ann. Scuola Norm. Sup. Pisa. 30, 311–339 (2001)
Baroni, P., Colombo, M., Mingione, G.: Non-autonomous Functionals, Borderline Cases and Related Function Classes. St. Petersburg Math. J. (2015, to appear)
Baroni, P., Kuusi, T., Mingione, G.: Borderline gradient continuity of minima. J. Fixed Point Theory Appl. 15, 537–575 (2014)
Baroni, P., Colombo, M., Mingione, G.: Harnack inequalities for double phase functionals. Nonlinear Anal. Theory Methods Appl. 121, 206–222 (2015)
Benkirane, A., Val, M.: Some approximation properties in Musielak–Orlicz–Sobolev spaces. Thai J. Math. 10, 371–381 (2012)
Bocea, M., Mihăilescu, M.: On the continuity of the Luxemburg norm of the gradient in $$L^{p(\cdot )}$$ L p ( · ) with respect to $$p(\cdot )$$ p ( · ) . Proc. Am. Math. Soc. 142, 507–517 (2014)
Brasco, L., Parini, E., Squassina, M.: Stability of variational eigenvalues for the fractional $$p$$ p -laplacian. Discrete Contin. Dyn. Syst. A 36, 1813–1845 (2016, to appear)
Brasco, L., Parini, E.: The second eigenvalue of the fractional $$p$$ p -laplacian, Adv. Calc. Var. (2015, to appear)
Brasco, L., Franzina, G.: An anisotropic eigenvalue problem of Stekloff type and weighted Wulff inequalities. Nonlinear Differ. Equ. Appl. 20, 1795–1830 (2013)
Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2010)
Champion, T., De Pascale, L.: Asymptotic behaviour of nonlinear eigenvalue problems involving $$p$$ p -laplacian-type operators. Proc. R. Soc. Edinb. Sect. A 137, 1179–1195 (2007)
Colasuonno, F., Squassina, M.: Stability of eigenvalues for variable exponent problems. Nonlinear Anal. 124, 56–67 (2015)
Colombo, M., Mingione, G.: Bounded minimisers of double phase variational integrals. Arch. Ration. Mech. Anal. 218, 219–273 (2015)
Colombo, M., Mingione, G.: Regularity for double phase variational problems. Arch. Ration. Mech. Anal. 215, 443–496 (2015)
Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. I. New York (1953)
Cupini, G., Marcellini, P., Mascolo, E.: Regularity under sharp anisotropic general growth conditions. Discrete Contin. Dyn. Syst. B 11, 66–86 (2009)
Cupini, G., Marcellini, P., Mascolo, E.: Existence and regularity for elliptic equations under $$p, q$$ p , q -growth. Adv. Differ. Equ. 19, 693–724 (2014)
Cupini, G., Marcellini, P., Mascolo, E.: Local boundedness of minimizers with limit growth conditions. J. Optim. Theory Appl. 166, 1–22 (2015)
Dal Maso, G.: An introduction to $$\Gamma $$ Γ -convergence. In: Progress in Nonlinear Differential Equations and their Applications, vol. 8. Birkhäuser, Boston (1993)
Degiovanni, M., Marzocchi, M.: Limit of minimax values under $$\Gamma $$ Γ -convergence. Electron. J. Differ. Equ. 2014, 1–19 (2014)
Degiovanni, M., Marzocchi, M.: On the dependence on $$p$$ p of the variational eigenvalues of the $$p$$ p -Laplace operator. Potential Anal. Springer Netherlands, 1–17 (2015)
Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, vol. 2017, Springer, Heidelberg (2011)
Faber, C.: Beweis dass unter allen homogen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt, Sitzungsber. Bayer. Akad. der Wiss. Math.-Phys., Munich, 169–172 (1923)
Fadell, E.R., Rabinowitz, P.H.: Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems. Invent. Math. 45, 139–174 (1978)
Fan, X.: Differential equations of divergence form in Musielak–Sobolev spaces and sub-supersolution method. J. Math. Anal. Appl. 386, 593–604 (2012)
Franzina, G., Lindqvist, P.: An eigenvalue problem with variable exponents. Nonlinear Anal. 85, 1–16 (2013)
Friedlander, L.: Asymptotic behavior of the eigenvalues of the $$\varphi $$ φ -Laplacian. Commun. Partial Differ. Equ. 14, 1059–1069 (1989)
Fusco, N., Maggi, F., Pratelli, A.: Stability estimates for certain Faber-Krahn, isocapacitary and Cheeger inequalities. Ann. Sc. Norm. Super. Pisa Cl. Sci. 8, 51–71 (2009)
García Azorero, J., Peral, I.: Comportement asymptotique des valeurs propres du $$p$$ p -laplacien. C. R. Acad. Sci. Paris Sér. I Math. 307, 75–78 (1988)
Harjulehto, P., Hästö, P., Klén, R.: Basic Properties of Generalized Orlicz Spaces, preprint
Iannizzotto, A., Squassina, M.: Weyl-type laws for fractional $$p$$ p -eigenvalue problems. Asymptot. Anal. 88, 233–245 (2014)
Juutinen, P., Lindqvist, P., Manfredi, J.J.: The $$\infty $$ ∞ -eigenvalue problem. Arch. Ration. Mech. Anal. 148, 89–105 (1999)
Krahn, E.: Uber eine von Rayleigh formulierte Minimaleigenschaft des Kreises. Math. Ann. 94, 97–100 (1925)
Krahn, E.: Uber Minimaleigenschaft des Kugel in drei und mehr dimensionen. Acta Comment. Univ. Tartu Math. (Dorpat) A9, 1–44 (1926)
Lieb, E.: On the lowest eigenvalue of the Laplacian for the intersection of two domains. Invent. Math. 74, 441–448 (1983)
Lindgren, E., Lindqvist, P.: Fractional eigenvalues. Calc. Var. Partial Differ. Equ. 49, 795–826 (2014)
Lindqvist, P.: Notes on the p-Laplace equation, Report. University of Jyvaskyla Department of Mathematics and Statistics, 102 University of Jyvaskyla, Jyvaskyla (2006)
Lindqvist, P.: Stability for the solutions of $${\rm div} (|\nabla u|^{p-2}\nabla u)=f$$ div ( | ∇ u | p - 2 ∇ u ) = f with varying $$p$$ p . J. Math. Anal. Appl. 127, 93–102 (1987)
Lindqvist, P.: On the equation $${\rm div} (| \nabla u |^{p-2} \nabla u) + \lambda |u|^{p-2} u=0$$ div ( | ∇ u | p - 2 ∇ u ) + λ | u | p - 2 u = 0 . Proc. Am. Math. Soc. 109, 157–164 (1990)
Lindqvist, P.: Some remarkable sine and cosine functions. Ricerche Mat. 2, 269–290 (1995)
Marcellini, P.: Regularity of minimisers of integrals of the calculus of variations with non standard growth conditions. Arch. Ration. Mech. Anal. 105, 267–284 (1989)
Marcellini, P.: Regularity and existence of solutions of elliptic equations with $$p, q$$ p , q -growth conditions. J. Differ. Equ. 90, 1–30 (1991)
Marcellini, P.: Regularity for some scalar variational problems under general growth conditions. J. Optim. Theory Appl. 90, 161–181 (1996)
Musielak, J.: Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer, Berlin (1983)
Parini, E.: Continuity of the variational eigenvalues of the $$p$$ p -Laplacian with respect to $$p$$ p . Bull. Aust. Math. Soc. 83, 376–381 (2011)
Perera, K., Agarwal, R.P., O’Regan, D.: Morse Theoretic Aspects of $$p$$ p -Laplacian Type Operators, vol. 161 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (2010)
Perera, K., Squassina, M.: Asymptotic behavior of the eigenvalues of the $$p(x)$$ p ( x ) -Laplacian. Manuscripta Math. 144, 535–544 (2014)
Squassina, M.: Symmetry in variational principles and applications. J. Lond. Math. Soc. 85, 323–348 (2012)
Strutt, J.W.: (Lord Rayleigh), The Theory of Sound, MacMillan, New York, 1877. Dover, New York (1945)
Van Schaftingen, J.: Symmetrization and minimax principles. Commun. Contemp. Math. 7, 463–481 (2005)
Weyl, H.: Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung). Math. Ann. 71, 441–479 (1912)
Yu, L.S.: Nonlinear $$p$$ p -Laplacian problems in unbounded domains. Proc. Am. Math. Soc. 115, 1037–1045 (1992)
Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR Ser. Mat. 50, 675–710 (1986)
Zhikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994)
Zhikov, V.V.: On Lavrentiev’s phenomenon. Russ. J. Math. Phys. 3, 249–269 (1995)
Zhikov, V.V.: On some variational problems. Russ. J. Math. Phys. 5, 105–116 (1997)