Eigenvalues for double phase variational integrals

Francesca Colasuonno1, Marco Squassina2
1Istituto per le Applicazioni del Calcolo “M. Picone,”, Consiglio Nazionale delle Ricerche, Rome, Italy
2Dipartimento di Informatica, Università degli Studi di Verona, Verona, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Acerbi, E., Mingione, G.: Regularity results for a class of functionals with nonstandard growth. Arch. Ration. Mech. Anal. 156, 121–140 (2001)

Acerbi, E., Mingione, G.: Regularity results for a class of quasiconvex functionals with nonstandard growth. Ann. Scuola Norm. Sup. Pisa. 30, 311–339 (2001)

Baroni, P., Colombo, M., Mingione, G.: Non-autonomous Functionals, Borderline Cases and Related Function Classes. St. Petersburg Math. J. (2015, to appear)

Baroni, P., Kuusi, T., Mingione, G.: Borderline gradient continuity of minima. J. Fixed Point Theory Appl. 15, 537–575 (2014)

Baroni, P., Colombo, M., Mingione, G.: Harnack inequalities for double phase functionals. Nonlinear Anal. Theory Methods Appl. 121, 206–222 (2015)

Benkirane, A., Val, M.: Some approximation properties in Musielak–Orlicz–Sobolev spaces. Thai J. Math. 10, 371–381 (2012)

Bocea, M., Mihăilescu, M.: On the continuity of the Luxemburg norm of the gradient in $$L^{p(\cdot )}$$ L p ( · ) with respect to $$p(\cdot )$$ p ( · ) . Proc. Am. Math. Soc. 142, 507–517 (2014)

Brasco, L., Parini, E., Squassina, M.: Stability of variational eigenvalues for the fractional $$p$$ p -laplacian. Discrete Contin. Dyn. Syst. A 36, 1813–1845 (2016, to appear)

Brasco, L., Parini, E.: The second eigenvalue of the fractional $$p$$ p -laplacian, Adv. Calc. Var. (2015, to appear)

Brasco, L., Franzina, G.: An anisotropic eigenvalue problem of Stekloff type and weighted Wulff inequalities. Nonlinear Differ. Equ. Appl. 20, 1795–1830 (2013)

Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2010)

Champion, T., De Pascale, L.: Asymptotic behaviour of nonlinear eigenvalue problems involving $$p$$ p -laplacian-type operators. Proc. R. Soc. Edinb. Sect. A 137, 1179–1195 (2007)

Colasuonno, F., Squassina, M.: Stability of eigenvalues for variable exponent problems. Nonlinear Anal. 124, 56–67 (2015)

Colombo, M., Mingione, G.: Bounded minimisers of double phase variational integrals. Arch. Ration. Mech. Anal. 218, 219–273 (2015)

Colombo, M., Mingione, G.: Regularity for double phase variational problems. Arch. Ration. Mech. Anal. 215, 443–496 (2015)

Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. I. New York (1953)

Cupini, G., Marcellini, P., Mascolo, E.: Regularity under sharp anisotropic general growth conditions. Discrete Contin. Dyn. Syst. B 11, 66–86 (2009)

Cupini, G., Marcellini, P., Mascolo, E.: Existence and regularity for elliptic equations under $$p, q$$ p , q -growth. Adv. Differ. Equ. 19, 693–724 (2014)

Cupini, G., Marcellini, P., Mascolo, E.: Local boundedness of minimizers with limit growth conditions. J. Optim. Theory Appl. 166, 1–22 (2015)

Dal Maso, G.: An introduction to $$\Gamma $$ Γ -convergence. In: Progress in Nonlinear Differential Equations and their Applications, vol. 8. Birkhäuser, Boston (1993)

Degiovanni, M., Marzocchi, M.: Limit of minimax values under $$\Gamma $$ Γ -convergence. Electron. J. Differ. Equ. 2014, 1–19 (2014)

Degiovanni, M., Marzocchi, M.: On the dependence on $$p$$ p of the variational eigenvalues of the $$p$$ p -Laplace operator. Potential Anal. Springer Netherlands, 1–17 (2015)

Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, vol. 2017, Springer, Heidelberg (2011)

Faber, C.: Beweis dass unter allen homogen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt, Sitzungsber. Bayer. Akad. der Wiss. Math.-Phys., Munich, 169–172 (1923)

Fadell, E.R., Rabinowitz, P.H.: Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems. Invent. Math. 45, 139–174 (1978)

Fan, X.: An imbedding theorem for Musielak–Sobolev spaces. Nonlinear Anal. 75, 1959–1971 (2012)

Fan, X.: Differential equations of divergence form in Musielak–Sobolev spaces and sub-supersolution method. J. Math. Anal. Appl. 386, 593–604 (2012)

Franzina, G., Lindqvist, P.: An eigenvalue problem with variable exponents. Nonlinear Anal. 85, 1–16 (2013)

Friedlander, L.: Asymptotic behavior of the eigenvalues of the $$\varphi $$ φ -Laplacian. Commun. Partial Differ. Equ. 14, 1059–1069 (1989)

Fusco, N., Maggi, F., Pratelli, A.: Stability estimates for certain Faber-Krahn, isocapacitary and Cheeger inequalities. Ann. Sc. Norm. Super. Pisa Cl. Sci. 8, 51–71 (2009)

García Azorero, J., Peral, I.: Comportement asymptotique des valeurs propres du $$p$$ p -laplacien. C. R. Acad. Sci. Paris Sér. I Math. 307, 75–78 (1988)

Harjulehto, P., Hästö, P., Klén, R.: Basic Properties of Generalized Orlicz Spaces, preprint

Iannizzotto, A., Squassina, M.: Weyl-type laws for fractional $$p$$ p -eigenvalue problems. Asymptot. Anal. 88, 233–245 (2014)

Juutinen, P., Lindqvist, P., Manfredi, J.J.: The $$\infty $$ ∞ -eigenvalue problem. Arch. Ration. Mech. Anal. 148, 89–105 (1999)

Krahn, E.: Uber eine von Rayleigh formulierte Minimaleigenschaft des Kreises. Math. Ann. 94, 97–100 (1925)

Krahn, E.: Uber Minimaleigenschaft des Kugel in drei und mehr dimensionen. Acta Comment. Univ. Tartu Math. (Dorpat) A9, 1–44 (1926)

Lieb, E.: On the lowest eigenvalue of the Laplacian for the intersection of two domains. Invent. Math. 74, 441–448 (1983)

Lindgren, E., Lindqvist, P.: Fractional eigenvalues. Calc. Var. Partial Differ. Equ. 49, 795–826 (2014)

Lindqvist, P.: Notes on the p-Laplace equation, Report. University of Jyvaskyla Department of Mathematics and Statistics, 102 University of Jyvaskyla, Jyvaskyla (2006)

Lindqvist, P.: Stability for the solutions of $${\rm div} (|\nabla u|^{p-2}\nabla u)=f$$ div ( | ∇ u | p - 2 ∇ u ) = f with varying $$p$$ p . J. Math. Anal. Appl. 127, 93–102 (1987)

Lindqvist, P.: On the equation $${\rm div} (| \nabla u |^{p-2} \nabla u) + \lambda |u|^{p-2} u=0$$ div ( | ∇ u | p - 2 ∇ u ) + λ | u | p - 2 u = 0 . Proc. Am. Math. Soc. 109, 157–164 (1990)

Lindqvist, P.: On non-linear Rayleigh quotients. Potential Anal. 2, 199–218 (1993)

Lindqvist, P.: Some remarkable sine and cosine functions. Ricerche Mat. 2, 269–290 (1995)

Lindqvist, P.: A nonlinear eigenvalue problem. Top. Math. Anal. 3, 175–203 (2008)

Marcellini, P.: Regularity of minimisers of integrals of the calculus of variations with non standard growth conditions. Arch. Ration. Mech. Anal. 105, 267–284 (1989)

Marcellini, P.: Regularity and existence of solutions of elliptic equations with $$p, q$$ p , q -growth conditions. J. Differ. Equ. 90, 1–30 (1991)

Marcellini, P.: Regularity for some scalar variational problems under general growth conditions. J. Optim. Theory Appl. 90, 161–181 (1996)

Musielak, J.: Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer, Berlin (1983)

Palais, R.S.: Homotopy theory of infinite dimensional manifolds. Topology 5, 1–16 (1966)

Parini, E.: Continuity of the variational eigenvalues of the $$p$$ p -Laplacian with respect to $$p$$ p . Bull. Aust. Math. Soc. 83, 376–381 (2011)

Perera, K., Agarwal, R.P., O’Regan, D.: Morse Theoretic Aspects of $$p$$ p -Laplacian Type Operators, vol. 161 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (2010)

Perera, K., Squassina, M.: Asymptotic behavior of the eigenvalues of the $$p(x)$$ p ( x ) -Laplacian. Manuscripta Math. 144, 535–544 (2014)

Squassina, M.: On Ekeland’s variational principle. J. Fixed Point Theory Appl. 10, 191–195 (2011)

Squassina, M.: Symmetry in variational principles and applications. J. Lond. Math. Soc. 85, 323–348 (2012)

Strutt, J.W.: (Lord Rayleigh), The Theory of Sound, MacMillan, New York, 1877. Dover, New York (1945)

Struwe, M.: Variational Methods, second edition: Ergebnisse Math. 34. Springer, Berlin (1996)

Van Schaftingen, J.: Symmetrization and minimax principles. Commun. Contemp. Math. 7, 463–481 (2005)

Weyl, H.: Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung). Math. Ann. 71, 441–479 (1912)

Yu, L.S.: Nonlinear $$p$$ p -Laplacian problems in unbounded domains. Proc. Am. Math. Soc. 115, 1037–1045 (1992)

Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR Ser. Mat. 50, 675–710 (1986)

Zhikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994)

Zhikov, V.V.: On Lavrentiev’s phenomenon. Russ. J. Math. Phys. 3, 249–269 (1995)

Zhikov, V.V.: On some variational problems. Russ. J. Math. Phys. 5, 105–116 (1997)