Eigenvalue Problems for Hemivariational Inequalities

Set-Valued Analysis - Tập 16 - Trang 1061-1087 - 2008
Nikolaos S. Papageorgiou1, Sandrina Rafaela Andrade Santos2, Vasile Staicu2
1Department of Mathematics, National Technical University, Athens, Greece
2Department of Mathematics, Aveiro University, Aveiro, Portugal

Tóm tắt

We consider a semilinear eigenvalue problem with a nonsmooth potential (hemivariational inequality). Using a nonsmooth analog of the local Ambrosetti–Rabinowitz condition (AR-condition), we show that the problem has a nontrivial smooth solution. In the scalar case, we show that we can relax the local AR-condition. Finally, for the resonant λ = λ 1 problem, using the nonsmooth version of the local linking theorem, we show that the problem has at least two nontrivial solutions. Our approach is variational, using minimax methods from the nonsmooth critical point theory.

Tài liệu tham khảo

Barletta, G., Marano, S.: Some remarks on critical point theory for locally Lipschitz functions. Glasgow Math. J. 45, 131–141 (2003) Brézis, H., Nirenberg, L.: Remarks on finding critical points. Comm. Pure Appl. Math. 44, 939–963 (1991) Carl, S., Le, V.K., Motreanu, D.: Nonsmooth Variational Problems and their Inequalities: Comparision Principles and Applications. Springer, New York (2007) Cirstea, F.S., Radulescu, V.: Multiplicity of solutions for a class of nonsymmetric eigenvalue hemivariational inequalities. J. Global Optim. 17, 43–54 (2000) Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983) Denkowski, Z., Migorski, S., Papageorgiou, N.S.: An Introduction to Nonlinear Analysis: Applications. Kluwer Academic, Boston (2003) Gasinski, L., Papageorgiou, N.S.: Existence of solutions and of multiple solutions for eigenvalue problems of hemivariational inequalities. Adv. Math. Sci. Appl. 11, 437–464 (2001) Gasinski, L., Papageorgiou, N.S.: Solutions and multiple solutions for quasilinear hemivariational inequalities at resonance. Proc. Roy. Soc. Edinburgh Sect. A. 131, 1091–1111 (2001) Gasinski, L., Papageorgiou, N.S.: Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems. Chapman Hall and CRC Press, Boca Raton (2005) Gasinski, L., Papageorgiou, N.S.: Nonlinear Analysis. Chapman Hall and CRC Press, Boca Raton (2006) Goeleven, D., Motreanu, D., Panagiotopoulos, P.: Multiple solutions for a class of eigenvalue problems in hemivariational inequalities. Nonlinear Anal. 29, 9–26 (1997) Kandilakis, D., Kourogenis, N., Papageorgiou, N.S.: Two nontrivial critical points for nonsmooth functionals via local linking and applications. J. Global Optim. 34, 219–244 (2006) Kourogenis, N., Papageorgiou, N.S.: Nonsmooth critical point theory and nonlinear elliptic equations at resonance. J. Aust. Math. Soc. Ser. A 69, 245–271 (2000) Marano, S., Bisci, G.M., Motreanu, D.: Multiple solutions for a class of elliptic hemivariational inequalities. J. Math. Anal. Appl. 337, 85–97 (2008) Motreanu, D., Motreanu, V., Papageorgiou, N.S.: Multiple nontrivial solutions for nonlinear eigenvalue problems. Proc. AMS 135, 3649–3658 (2007) Motreanu, D., Panagiotopoulos, P.: An eigenvalue problem for a hemivariational inequality involving a nonlinear compact operator. Set-Valued Anal. 3, 157–166 (1995) Motreanu, D., Panagiotpoulos, P.: On the eigenvalue problem for hemivariational inequalities: existence and multiplicity of solutions. J. Math. Anal. Appl. 197, 75–89 (1996) Motreanu, D., Radulescu, V.: Variational and Nonvariational Methods in Nonlinear Analysis and Boundary Value Problems. Kluwer, Dordrecht (2003) Motreanu, D., Radulescu, V.: Eigenvalue problems for degenerate nonlinear elliptic equations in anisotropic media. Bound. Value Probl. 2, 107–127 (2005) Naniewicz, Z., Panagiotopoulos, P.: Mathematical Theory of Hemivariational Inequalities and Applications. Marcel Dekker, New York (1995) Papageorgiou, E., Papageorgiou, N.S.: A multiplicity theorem for problems with the p −Laplacian. J. Funct. Anal. 244, 63–77 (2007) Rabinowitz, P.: Minimax Methods in Critical Point Theory with Applications to Differential Equations Vol. 65 of CBMS Regional Conference Series in Math. AMS, Providence (1986)