Eigenmode analysis of the waveguide-plasmon structure based on a-Si1-C :H layer with 1D gold grating
Tài liệu tham khảo
Noda, 2007, Spontaneous-emission control by photonic crystals and nanocavities, Nat. Photonics, 1, 449, 10.1038/nphoton.2007.141
Pelton, 2015, Modified spontaneous emission in nanophotonic structures, Nat. Photonics, 9, 427, 10.1038/nphoton.2015.103
Sauvan, 2013, Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators, Phys. Rev. Lett., 110, 10.1103/PhysRevLett.110.237401
Yu, 2008, Small-divergence semiconductor lasers by plasmonic collimation, Nat. Photonics, 2, 564, 10.1038/nphoton.2008.152
Rybin, 2017, Effect of photonic crystal stop-band on photoluminescence of a*Si1*xCx: H, Phys. Rev. B, 95, 10.1103/PhysRevB.95.165118
Remnev, 2018, Metasurfaces: a new look at Maxwell’s equations and new ways to control light, Phys. Uspekhi, 61, 157, 10.3367/UFNe.2017.08.038192
Krasnok, 2013, Optical nanoantennas, Phys. Uspekhi, 56, 539, 10.3367/UFNe.0183.201306a.0561
Konstantatos, 2010, Nanostructured materials for photon detection, Nat. Nanotechnol., 5, 391, 10.1038/nnano.2010.78
Jia, 2015, Sandwichstructured Cu2O photodetectors enhanced by localized surface plasmon resonances, Appl. Surf. Sci., 332, 340, 10.1016/j.apsusc.2015.01.194
Nair, 2010, Photonic crystal sensors: an overview, Prog. Quantum Electron., 34, 89, 10.1016/j.pquantelec.2010.01.001
Li, 2015, Plasmon-enhanced optical sensors: a review, Analyst, 140, 386, 10.1039/C4AN01079E
Christ, 2004, Optical properties of planar metallic photonic crystal structures: Experiment and theory, Phys. Rev. B, 70, 10.1103/PhysRevB.70.125113
Dyakov, 2016, Optical properties of silicon nanocrystals covered by periodic array of gold nanowires, Phys. Rev. B, 93, 10.1103/PhysRevB.93.205413
Dyakov, 2018, Plasmon induced modification of silicon nanocrystals photoluminescence in presence of gold nanostripes, Sci. Rep., 8, 4911, 10.1038/s41598-018-22633-x
Glass, 1980, Interaction of metal particles with adsorbed dye molecules: absorption and luminescence, Opt. Lett., 5, 368, 10.1364/OL.5.000368
Pshenova, 2019, Luminescence enhancement and sers by self-assembled plasmonic silver nanostructures in nanoporous glasses, Plasmonics, 14, 125, 10.1007/s11468-018-0784-5
Moskovits, 1985, Surface-enhanced spectroscopy, Rev. Mod. Phys., 57, 783, 10.1103/RevModPhys.57.783
Seo, 2018, 3d plasmon coupling assisted sers on nanoparticle-nanocup array hybrids, Sci. Rep., 8, 3002, 10.1038/s41598-018-19256-7
Hubert, 2007, Role of surface plasmon in second harmonic generation from gold nanorods, Appl. Phys. Lett., 90, 10.1063/1.2734503
Valev, 2011, The origin of second harmonic generation hotspots in chiral optical metamaterials [invited], Opt. Mater. Express, 1, 36, 10.1364/OME.1.000036
Fano, 1941, The theory of anomalous diffraction gratings and of quasistationary waves on metallic surfaces (sommerfeld’s waves), J. Opt. Soc. Am., 31, 213, 10.1364/JOSA.31.000213
Kasani, 2019, A review of 2d and 3d plasmonic nanostructure array patterns: fabrication, light management and sensing applications, Nanophotonics, 8, 2065, 10.1515/nanoph-2019-0158
Chien, 2007, Coupled waveguide–surface plasmon resonance biosensor with subwavelength grating, Biosens. Bioelectron., 22, 2737, 10.1016/j.bios.2006.11.021
Koirala, 2017, Polarization-controlled broad color palette based on an ultrathin onedimensional resonant grating structure, Sci. Rep., 7, 40073, 10.1038/srep40073
Mazulquim, 2014, Efficient band-pass color filters enabled by resonant modes and plasmons near the rayleigh anomaly, Opt. Express, 22, 30843, 10.1364/OE.22.030843
Belotelov, 2011, Enhanced magneto-optical effects in magnetoplasmonic crystals, Nat. Nanotechnol., 6, 370, 10.1038/nnano.2011.54
Dyakov, 2019, Wide-band enhancement of the transverse magneto-optical kerr effect in magnetitebased plasmonic crystals, Phys. Rev. B, 100, 10.1103/PhysRevB.100.214411
Siebert, 1987, Photoluminescence in a *Si1*xCx: H films, Phys. Status Solidi (b), 140, 311, 10.1002/pssb.2221400132
Akaoglu, 2008, Carbon content influence on the optical constants of hydrogenated amorphous silicon carbon alloys, Opt. Mater., 30, 1257, 10.1016/j.optmat.2007.06.005
Medvedev, 2016, Asymmetric planar luminescent waveguide based on amorphous silicon carbide with polarized radiation in leaky modes, Tech. Phys., 61, 756, 10.1134/S1063784216050169
Güne³, 2017, Effects of carbon content and plasma power on room temperature photoluminescence characteristics of hydrogenated amorphous silicon carbide thin films deposited by pecvd, Thin Solid Films, 636, 85, 10.1016/j.tsf.2017.05.041
Medvedev, 2014, Planar light-emitting microcavities based on hydrogenated amorphous silicon carbide, Semiconductors, 48, 1374, 10.1134/S1063782614100194
Goodman, 2005, Introduction to Fourier Optics
Dai, 2005, Measuring large numerical apertures by imaging the angular distribution of radiation of fluorescing molecules, Opt. Express, 13, 9409, 10.1364/OPEX.13.009409
Permyakov, 2018, Visualization of isofrequency contours of strongly localized waveguide modes in planar dielectric structures, Jetp Lett., 107, 10, 10.1134/S0021364018010083
Pidgayko, 2019, Direct imaging of isofrequency contours of guided modes in extremely anisotropic all-dielectric metasurface, ACS Photonics, 6, 510, 10.1021/acsphotonics.8b01487
Moharam, 1995, Formulation for stable and efficient implementation of the rigorous coupledwave analysis of binary gratings, J. Opt. Soc. Am. A, 12, 1068, 10.1364/JOSAA.12.001068
Tikhodeev, 2002, Quasiguided modes and optical properties of photonic crystal slabs, Phys. Rev. B, 66, 10.1103/PhysRevB.66.045102
Li, 1996, Use of fourier series in the analysis of discontinuous periodic structures, J. Opt. Soc. Am. A, 13, 1870, 10.1364/JOSAA.13.001870
Yakubovsky, 2017, Optical constants and structural properties of thin gold films, Opt. Express, 25, 25574, 10.1364/OE.25.025574
Unger, 1980, Planar opticalwaveguides and fibres
Paddon, 2000, Two-dimensional vector-coupled-mode theory for textured planar waveguides, Phys. Rev. B, 61, 2090, 10.1103/PhysRevB.61.2090
Overvig, 2020, Selection rules for quasibound states in the continuum, Phys. Rev. B, 102, 10.1103/PhysRevB.102.035434
Dyakov, 2021, Photonic bound states in the continuum in si structures with the self-assembled ge nanoislands, Laser Photonics Rev., 15