Eigenfunction expansions for partially hypoelliptic operators

Arkiv för Matematik - Tập 10 - Trang 79-98 - 1972
Lars-Christer Böiers1,2
1University of Lund, Lund, Sweden
2Matematiska Institutionen, Lund 7, Sweden

Tài liệu tham khảo

Bergendal, G., Convergence and summability of eigenfunction expansions connected with elliptic differential operators.Medd. Lunds Univ. Mat. Sem. 15 (1959). Gårding, L. &Malgrange, B., Opérateurs différentiels partiellement hypoelliptiques et partiellement elliptiques.Math. Scand. 9 (1961), 5–21. Hörmander, L., On interior regularity of the solutions of partial differential equations.Comm. Pure Appl. Math. 11 (1958), 197–218. —,Linear partial differential operators. Springer, Berlin, 1963. Keldyš, M. V., On a Tauberian theorem.Trudy Mat. Inst. Steklov 38 (1951), 77–86. Nilsson, N., Essential self-adjointness and the spectral resolution of Hamiltonian operators.Kungl. Fysiogr. Sällsk. i Lund Förh. 29 (1959), 1–19. —, Some estimates for eigenfunction expansions and spectral functions corresponding to elliptic differential operators.Math. Scand. 9 (1961), 107–121. —, Asymptotic estimates for spectral functions connected with hypoelliptic differential operators.Ark. Mat. 5 (1965), 527–540. Selander, T., Bilateral Tauberian theorems of Keldyš type.Ark. Mat. 5 (1963), 85–96. Sz-Nagy, B.,Spektraldarstellung linearer Transformationen des Hilbertschen Raumes. Springer, Berlin, 1942.