Efficiently synthesized n-type CoSb3 thermoelectric alloys under TGZM effect
Tài liệu tham khảo
Tang, 2015, Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites, Nat. Mater., 14, 1223, 10.1038/nmat4430
Yang, 2019, Microstructure and enhanced thermoelectric performance of Te-SnTe eutectic composites with self-assembled rod and lamellar morphology, Intermetallics, 112, 10.1016/j.intermet.2019.106499
Su, 2016, Thermal stability of melt grown Tl-doped PbTeSe material for thermoelectric applications, Mater. Sci. Semicond. Process., 56, 94, 10.1016/j.mssp.2016.07.024
Zhao, 2010, Fabrication of a CoSb3-based thermoelectric module, Mater. Sci. Semicond. Process., 13, 221, 10.1016/j.mssp.2010.10.016
Li, 2020, An expandable thermoelectric power generator and the experimental studies on power output, Int. J. Heat Mass Tran., 160, 10.1016/j.ijheatmasstransfer.2020.120205
Yu, 2020, Towards high integration and power density: Zigzag-type thin-film thermoelectric generator assisted by rapid pulse laser patterning technique, Appl. Energy, 275, 10.1016/j.apenergy.2020.115404
Zhang, 2020, Predicting performance of fiber thermoelectric generator arrays in wearable electronic applications, Nanomater. Energy, 76
Siddique, 2016, Thermal energy harvesting from the human body using flexible thermoelectric generator (FTEG) fabricated by a dispenser printing technique, Energy, 115, 1081, 10.1016/j.energy.2016.09.087
He, 2015, Recent development and application of thermoelectric generator and cooler, Appl. Energy, 143, 1, 10.1016/j.apenergy.2014.12.075
Kuroki, 2014, Thermoelectric generation using waste heat in steel works, J. Electron. Mater., 43, 2405, 10.1007/s11664-014-3094-5
Zhu, 2014, Synthesis of highly crystalline Bi2Te3nanotubes and their enhanced thermoelectric properties, J. Mater. Chem., 2, 12821, 10.1039/C4TA02532F
Shi, 2008, Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites, Appl. Phys. Lett., 92, 182101, 10.1063/1.2920210
Zhang, 2016, Thermal stability of Mg2Si0.4Sn0.6 in inert gases and atomic-layer-deposited Al2O3 thin film as a protective coating, J. Mater. Chem., 4, 17726, 10.1039/C6TA07611D
Yang, 2020, Ultralow thermal conductivity and enhanced thermoelectric properties of SnTe based alloys prepared by melt spinning technique, J. Alloys Compd., 837, 10.1016/j.jallcom.2020.155568
Itoh, 2012, Influence of addition of alumina nanoparticles on thermoelectric properties of La-filled skutterudite CoSb3 compounds, Mater. Trans., 53, 1801, 10.2320/matertrans.E-M2012821
Li, 2016, High pressure synthesized Ca-filled CoSb3 skutterudites with enhanced thermoelectric properties, J. Alloys Compd., 677, 61, 10.1016/j.jallcom.2016.03.239
Li, 2009, High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase, Appl. Phys. Lett., 94, 102114, 10.1063/1.3099804
Tang, 2014, Phase diagram of In–Co–Sb system and thermoelectric properties of In-containing skutterudites, Energy Environ. Sci., 7, 812, 10.1039/C3EE43240H
Tang, 2015, Temperature dependent solubility of Yb in Yb–CoSb3 skutterudite and its effect on preparation, optimization and lifetime of thermoelectrics, Journal of Materiomics, 1, 75, 10.1016/j.jmat.2015.03.008
Tang, 2015, Solubility design leading to high figure of merit in low-cost Ce-CoSb3 skutterudites, Nat. Commun., 6, 7584, 10.1038/ncomms8584
Yang, 2007, Dual-frequency resonant phonon scattering in BaxRyCo4Sb12 (R=La, Ce, and Sr), Appl. Phys. Lett., 90, 192111, 10.1063/1.2737422
Kim, 2017, High thermoelectric performance in (Bi0.25Sb0.75)2Te3 due to band convergence and improved by carrier concentration control, Mater. Today, 20, 452, 10.1016/j.mattod.2017.02.007
Choi, 2016, Enhanced thermoelectric properties of Ga and in Co-added CoSb3-based skutterudites with optimized chemical composition and microstructure, AIP Adv., 6, 125015, 10.1063/1.4971819
Meng, 2017, Grain boundary engineering for achieving high thermoelectric performance in n-type skutterudites, Advanced Energy Materials, 7, 10.1002/aenm.201602582
Qi, 2010, Effects of rapid solidification method on thermoelectric and mechanical properties of beta-Zn4+xSb3 materials, J. Inorg. Mater., 25, 603, 10.3724/SP.J.1077.2010.00603
Son, 2017, Control of electrical to thermal conductivity ratio for p-type LaxFe3CoSb12 thermoelectrics by using a melt-spinning process, J. Alloys Compd., 729, 1209, 10.1016/j.jallcom.2017.09.207
Yan, 2011, Correlation of thermoelectric and microstructural properties of p-type CeFe4Sb12 melt-spun ribbons using a rapid screening method, Appl. Phys. Lett., 98, 10.1063/1.3570690
Li, 2009, Nanostructured bulk YbxCo4Sb12with high thermoelectric performance prepared by the rapid solidification method, J. Phys. Appl. Phys., 42, 145409, 10.1088/0022-3727/42/14/145409
Ding, 2014, Study on the high temperature stability of YbyCo4Sb12/Yb2O3 composite thermoelectric material, J. Inorg. Mater., 29, 209, 10.3724/SP.J.1077.2014.13261
Zhang, 2018, Interface stability of skutterudite thermoelectric materials/Ti88Al12, J. Inorg. Mater., 33, 889, 10.15541/jim20170517
Akasaka, 2005, Effects of post-annealing on thermoelectric properties of p-type CoSb3 grown by the vertical Bridgman method, J. Alloys Compd., 386, 228, 10.1016/j.jallcom.2004.04.144
Wang, 2017, Microstructure and thermoelectric properties of doped p-type CoSb3 under TGZM effect, J. Cryst. Growth, 466, 56, 10.1016/j.jcrysgro.2017.03.020
Oubensaid, 2009, Cryogenic etching of n-type silicon with p+ doped walls with the TGZM process through the Al/Si eutectic alloy, Microelectron. Eng., 86, 2262, 10.1016/j.mee.2009.04.002
Nguyen Thi, 2008, In situ and real-time analysis of TGZM phenomena by synchrotron X-ray radiography, J. Cryst. Growth, 310, 2906, 10.1016/j.jcrysgro.2008.01.041
Nguyen Thi, 2003, Preparation of the initial solid–liquid interface and melt in directional solidification, J. Cryst. Growth, 253, 539, 10.1016/S0022-0248(03)01041-8
Li, 2017, Growth of bulk Si from Si–Al alloy by temperature gradient zone melting, Mater. Sci. Semicond. Process., 66, 170, 10.1016/j.mssp.2017.04.017
Tang, 2015, Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites, Nat. Mater., 14, 1223, 10.1038/nmat4430
Kang, 2017, High pressure synthesis and thermoelectric properties of Ba-filled CoSb3 skutterudites, J. Mater. Sci. Mater. Electron., 28, 8771, 10.1007/s10854-017-6603-5
Caillat, 1996, Properties of single crystalline semiconducting CoSb3, J. Appl. Phys., 80, 4442, 10.1063/1.363405
Nolas, 2003, Polarized Raman-scattering study of Ge and Sn-filled CoSb3, J. Appl. Phys., 94, 7440, 10.1063/1.1628377
Zheng, 2018, Thermoelectric properties and micro-structure characteristics of nano-sized CoSb3 thin films prefabricating by co-sputtering, J. Alloys Compd., 732, 958, 10.1016/j.jallcom.2017.10.207
Lutz, 1981, Lattice vibration-spectra .23. Infrared spectroscopic studies on the skutterudite type compounds COP3, COAS3, COSB3, RHP3, RHAS3, RHSB3, IRP3, IRAS3, IRSB3, Z. Anorg. Allg. Chem., 480, 105, 10.1002/zaac.19814800913
Zheng, 2015, High-performance in filled CoSb3 nano thin films fabricated by multi-step co-sputtering method, J. Alloys Compd., 639, 74, 10.1016/j.jallcom.2015.03.149
Rogl, 2014, Nanostructuring of p- and n-type skutterudites reaching figures of merit of approximately 1.3 and 1.6, respectively, Acta Mater., 76, 434, 10.1016/j.actamat.2014.05.051
Kim, 2015, Characterization of Lorenz number with Seebeck coefficient measurement, Apl. Mater., 3, 10.1063/1.4908244
Yadav, 2018, Incorporation of MoS2 nanosheets in CoSb3 matrix as an efficient novel strategy to enhance its thermoelectric performance, Appl. Surf. Sci., 435, 1265, 10.1016/j.apsusc.2017.11.262
Bhardwaj, 2019, Collective effect of Fe and Se to improve the thermoelectric performance of unfilled p-type CoSb3 skutterudites, ACS Appl. Energy Mater., 2, 1067, 10.1021/acsaem.8b01609
Bhardwaj, 2020, Optimization of electrical and thermal transport properties of Fe0.25Co0.75Sb3 Skutterudite employing the isoelectronic Bi-doping, Intermetallics, 123, 8, 10.1016/j.intermet.2020.106796
Li, 2016, Directional solidification and thermoelectric properties of undoped Mg2Sn crystal, J. Electron. Mater., 45, 2895, 10.1007/s11664-015-4320-5
Mi, 2008, Thermoelectric properties of Yb0.15Co4Sb12based nanocomposites with CoSb3nano-inclusion, J. Phys. Appl. Phys., 41, 205403, 10.1088/0022-3727/41/20/205403
Kong, 2017, Thermoelectric properties of Ni0.15Co3.85Sb12 and Fe0.2Ni0.15Co3.65Sb12 skutterudites prepared by HPHT method, Materials Science-Poland, 35, 496, 10.1515/msp-2017-0069
Eilertsen, 2013, Fracture toughness of Co4Sb12 and In0.1Co4Sb12 thermoelectric skutterudites evaluated by three methods, J. Alloys Compd., 552, 492, 10.1016/j.jallcom.2012.11.066
Liu, 2015, Current progress and future challenges in thermoelectric power generation: from materials to devices, Acta Mater., 87, 357, 10.1016/j.actamat.2014.12.042
