Efficiently synthesized n-type CoSb3 thermoelectric alloys under TGZM effect

Materials Science in Semiconductor Processing - Tập 123 - Trang 105542 - 2021
Dou Li1, Shuangming Li1, Xuguang Li1, Bin Yang1, Hong Zhong1
1State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, PR China

Tài liệu tham khảo

Tang, 2015, Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites, Nat. Mater., 14, 1223, 10.1038/nmat4430 Yang, 2019, Microstructure and enhanced thermoelectric performance of Te-SnTe eutectic composites with self-assembled rod and lamellar morphology, Intermetallics, 112, 10.1016/j.intermet.2019.106499 Su, 2016, Thermal stability of melt grown Tl-doped PbTeSe material for thermoelectric applications, Mater. Sci. Semicond. Process., 56, 94, 10.1016/j.mssp.2016.07.024 Zhao, 2010, Fabrication of a CoSb3-based thermoelectric module, Mater. Sci. Semicond. Process., 13, 221, 10.1016/j.mssp.2010.10.016 Li, 2020, An expandable thermoelectric power generator and the experimental studies on power output, Int. J. Heat Mass Tran., 160, 10.1016/j.ijheatmasstransfer.2020.120205 Yu, 2020, Towards high integration and power density: Zigzag-type thin-film thermoelectric generator assisted by rapid pulse laser patterning technique, Appl. Energy, 275, 10.1016/j.apenergy.2020.115404 Zhang, 2020, Predicting performance of fiber thermoelectric generator arrays in wearable electronic applications, Nanomater. Energy, 76 Siddique, 2016, Thermal energy harvesting from the human body using flexible thermoelectric generator (FTEG) fabricated by a dispenser printing technique, Energy, 115, 1081, 10.1016/j.energy.2016.09.087 He, 2015, Recent development and application of thermoelectric generator and cooler, Appl. Energy, 143, 1, 10.1016/j.apenergy.2014.12.075 Kuroki, 2014, Thermoelectric generation using waste heat in steel works, J. Electron. Mater., 43, 2405, 10.1007/s11664-014-3094-5 Zhu, 2014, Synthesis of highly crystalline Bi2Te3nanotubes and their enhanced thermoelectric properties, J. Mater. Chem., 2, 12821, 10.1039/C4TA02532F Shi, 2008, Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites, Appl. Phys. Lett., 92, 182101, 10.1063/1.2920210 Zhang, 2016, Thermal stability of Mg2Si0.4Sn0.6 in inert gases and atomic-layer-deposited Al2O3 thin film as a protective coating, J. Mater. Chem., 4, 17726, 10.1039/C6TA07611D Yang, 2020, Ultralow thermal conductivity and enhanced thermoelectric properties of SnTe based alloys prepared by melt spinning technique, J. Alloys Compd., 837, 10.1016/j.jallcom.2020.155568 Itoh, 2012, Influence of addition of alumina nanoparticles on thermoelectric properties of La-filled skutterudite CoSb3 compounds, Mater. Trans., 53, 1801, 10.2320/matertrans.E-M2012821 Li, 2016, High pressure synthesized Ca-filled CoSb3 skutterudites with enhanced thermoelectric properties, J. Alloys Compd., 677, 61, 10.1016/j.jallcom.2016.03.239 Li, 2009, High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase, Appl. Phys. Lett., 94, 102114, 10.1063/1.3099804 Tang, 2014, Phase diagram of In–Co–Sb system and thermoelectric properties of In-containing skutterudites, Energy Environ. Sci., 7, 812, 10.1039/C3EE43240H Tang, 2015, Temperature dependent solubility of Yb in Yb–CoSb3 skutterudite and its effect on preparation, optimization and lifetime of thermoelectrics, Journal of Materiomics, 1, 75, 10.1016/j.jmat.2015.03.008 Tang, 2015, Solubility design leading to high figure of merit in low-cost Ce-CoSb3 skutterudites, Nat. Commun., 6, 7584, 10.1038/ncomms8584 Yang, 2007, Dual-frequency resonant phonon scattering in BaxRyCo4Sb12 (R=La, Ce, and Sr), Appl. Phys. Lett., 90, 192111, 10.1063/1.2737422 Kim, 2017, High thermoelectric performance in (Bi0.25Sb0.75)2Te3 due to band convergence and improved by carrier concentration control, Mater. Today, 20, 452, 10.1016/j.mattod.2017.02.007 Choi, 2016, Enhanced thermoelectric properties of Ga and in Co-added CoSb3-based skutterudites with optimized chemical composition and microstructure, AIP Adv., 6, 125015, 10.1063/1.4971819 Meng, 2017, Grain boundary engineering for achieving high thermoelectric performance in n-type skutterudites, Advanced Energy Materials, 7, 10.1002/aenm.201602582 Qi, 2010, Effects of rapid solidification method on thermoelectric and mechanical properties of beta-Zn4+xSb3 materials, J. Inorg. Mater., 25, 603, 10.3724/SP.J.1077.2010.00603 Son, 2017, Control of electrical to thermal conductivity ratio for p-type LaxFe3CoSb12 thermoelectrics by using a melt-spinning process, J. Alloys Compd., 729, 1209, 10.1016/j.jallcom.2017.09.207 Yan, 2011, Correlation of thermoelectric and microstructural properties of p-type CeFe4Sb12 melt-spun ribbons using a rapid screening method, Appl. Phys. Lett., 98, 10.1063/1.3570690 Li, 2009, Nanostructured bulk YbxCo4Sb12with high thermoelectric performance prepared by the rapid solidification method, J. Phys. Appl. Phys., 42, 145409, 10.1088/0022-3727/42/14/145409 Ding, 2014, Study on the high temperature stability of YbyCo4Sb12/Yb2O3 composite thermoelectric material, J. Inorg. Mater., 29, 209, 10.3724/SP.J.1077.2014.13261 Zhang, 2018, Interface stability of skutterudite thermoelectric materials/Ti88Al12, J. Inorg. Mater., 33, 889, 10.15541/jim20170517 Akasaka, 2005, Effects of post-annealing on thermoelectric properties of p-type CoSb3 grown by the vertical Bridgman method, J. Alloys Compd., 386, 228, 10.1016/j.jallcom.2004.04.144 Wang, 2017, Microstructure and thermoelectric properties of doped p-type CoSb3 under TGZM effect, J. Cryst. Growth, 466, 56, 10.1016/j.jcrysgro.2017.03.020 Oubensaid, 2009, Cryogenic etching of n-type silicon with p+ doped walls with the TGZM process through the Al/Si eutectic alloy, Microelectron. Eng., 86, 2262, 10.1016/j.mee.2009.04.002 Nguyen Thi, 2008, In situ and real-time analysis of TGZM phenomena by synchrotron X-ray radiography, J. Cryst. Growth, 310, 2906, 10.1016/j.jcrysgro.2008.01.041 Nguyen Thi, 2003, Preparation of the initial solid–liquid interface and melt in directional solidification, J. Cryst. Growth, 253, 539, 10.1016/S0022-0248(03)01041-8 Li, 2017, Growth of bulk Si from Si–Al alloy by temperature gradient zone melting, Mater. Sci. Semicond. Process., 66, 170, 10.1016/j.mssp.2017.04.017 Tang, 2015, Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites, Nat. Mater., 14, 1223, 10.1038/nmat4430 Kang, 2017, High pressure synthesis and thermoelectric properties of Ba-filled CoSb3 skutterudites, J. Mater. Sci. Mater. Electron., 28, 8771, 10.1007/s10854-017-6603-5 Caillat, 1996, Properties of single crystalline semiconducting CoSb3, J. Appl. Phys., 80, 4442, 10.1063/1.363405 Nolas, 2003, Polarized Raman-scattering study of Ge and Sn-filled CoSb3, J. Appl. Phys., 94, 7440, 10.1063/1.1628377 Zheng, 2018, Thermoelectric properties and micro-structure characteristics of nano-sized CoSb3 thin films prefabricating by co-sputtering, J. Alloys Compd., 732, 958, 10.1016/j.jallcom.2017.10.207 Lutz, 1981, Lattice vibration-spectra .23. Infrared spectroscopic studies on the skutterudite type compounds COP3, COAS3, COSB3, RHP3, RHAS3, RHSB3, IRP3, IRAS3, IRSB3, Z. Anorg. Allg. Chem., 480, 105, 10.1002/zaac.19814800913 Zheng, 2015, High-performance in filled CoSb3 nano thin films fabricated by multi-step co-sputtering method, J. Alloys Compd., 639, 74, 10.1016/j.jallcom.2015.03.149 Rogl, 2014, Nanostructuring of p- and n-type skutterudites reaching figures of merit of approximately 1.3 and 1.6, respectively, Acta Mater., 76, 434, 10.1016/j.actamat.2014.05.051 Kim, 2015, Characterization of Lorenz number with Seebeck coefficient measurement, Apl. Mater., 3, 10.1063/1.4908244 Yadav, 2018, Incorporation of MoS2 nanosheets in CoSb3 matrix as an efficient novel strategy to enhance its thermoelectric performance, Appl. Surf. Sci., 435, 1265, 10.1016/j.apsusc.2017.11.262 Bhardwaj, 2019, Collective effect of Fe and Se to improve the thermoelectric performance of unfilled p-type CoSb3 skutterudites, ACS Appl. Energy Mater., 2, 1067, 10.1021/acsaem.8b01609 Bhardwaj, 2020, Optimization of electrical and thermal transport properties of Fe0.25Co0.75Sb3 Skutterudite employing the isoelectronic Bi-doping, Intermetallics, 123, 8, 10.1016/j.intermet.2020.106796 Li, 2016, Directional solidification and thermoelectric properties of undoped Mg2Sn crystal, J. Electron. Mater., 45, 2895, 10.1007/s11664-015-4320-5 Mi, 2008, Thermoelectric properties of Yb0.15Co4Sb12based nanocomposites with CoSb3nano-inclusion, J. Phys. Appl. Phys., 41, 205403, 10.1088/0022-3727/41/20/205403 Kong, 2017, Thermoelectric properties of Ni0.15Co3.85Sb12 and Fe0.2Ni0.15Co3.65Sb12 skutterudites prepared by HPHT method, Materials Science-Poland, 35, 496, 10.1515/msp-2017-0069 Eilertsen, 2013, Fracture toughness of Co4Sb12 and In0.1Co4Sb12 thermoelectric skutterudites evaluated by three methods, J. Alloys Compd., 552, 492, 10.1016/j.jallcom.2012.11.066 Liu, 2015, Current progress and future challenges in thermoelectric power generation: from materials to devices, Acta Mater., 87, 357, 10.1016/j.actamat.2014.12.042