Efficient synthesis of hierarchical NiO nanosheets for high-performance flexible all-solid-state supercapacitors

Journal of Materials Chemistry A - Tập 2 Số 28 - Trang 10917-10922
Yue Qian1,2,3, Rong Liu1,2,3, Qiufan Wang1,2,3, Jing Xu1,2,3, Di Chen1,2,3, Guozhen Shen4,5,6,7
1Huazhong University of Science and Technology (HUST)
2Wuhan 430074, China
3Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
4Beijing 100083, China
5Chinese Academy of sciences
6Institute of Semiconductors
7State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China

Tóm tắt

A simple strategy was developed to grow NiO nanosheets on carbon cloth as a binder-free electrode for a high-performance flexible all-solid-state supercapacitor device.

Từ khóa


Tài liệu tham khảo

Xu, 2013, ACS Nano, 7, 5453, 10.1021/nn401450s

Chen, 2011, Nano Lett., 11, 5165, 10.1021/nl2023433

Yang, 2012, Nano Lett., 12, 321, 10.1021/nl203600x

Zhang, 2012, Nano Lett., 12, 1806, 10.1021/nl203903z

Wang, 2012, Nano Res., 5, 605, 10.1007/s12274-012-0246-x

Lu, 2012, Nano Lett., 12, 5376, 10.1021/nl302761z

Wang, 2013, J. Mater. Chem. A, 1, 2468, 10.1039/c2ta01283a

Wang, 2013, Adv. Mater., 25, 1479, 10.1002/adma.201204063

Zheng, 2013, J. Mater. Chem. C, 1, 225, 10.1039/C2TC00047D

Meng, 2010, Nano Lett., 10, 4025, 10.1021/nl1019672

Gao, 2012, ACS Appl. Mater. Interfaces, 4, 7020, 10.1021/am302280b

Wu, 2012, J. Am. Chem. Soc., 134, 19532, 10.1021/ja308676h

Xiao, 2012, J. Power Sources, 219, 140, 10.1016/j.jpowsour.2012.07.030

Yang, 2012, Phys. Chem. Chem. Phys., 14, 11048, 10.1039/c2cp41604b

Yuan, 2009, J. Mater. Chem., 19, 5772, 10.1039/b902221j

Wang, 2012, Adv. Energy Mater., 2, 1188, 10.1002/aenm.201200008

Liu, 2012, CrystEngComm, 14, 4582, 10.1039/c2ce25278c

Zhou, 2013, Energy Environ. Sci., 6, 2216, 10.1039/C3EE40155C

Kozhummal, 2012, ACS Nano, 6, 7133, 10.1021/nn302188q

Xu, 2013, Chem.–Eur. J., 19, 6451, 10.1002/chem.201204571

Wang, 2014, ChemElectroChem, 1, 559, 10.1002/celc.201300084

Feng, 2011, J. Am. Chem. Soc., 133, 17832, 10.1021/ja207176c

Lu, 2012, Nano Lett., 12, 1690, 10.1021/nl300173j

Liu, 2012, J. Mater. Chem., 22, 2419, 10.1039/C1JM14804D

Dong, 2012, Carbon, 50, 4865, 10.1016/j.carbon.2012.06.014

Leea, 2011, Electrochim. Acta, 56, 4849, 10.1016/j.electacta.2011.02.116

Lv, 2012, J. Power Sources, 220, 160, 10.1016/j.jpowsour.2012.07.073

Qaid, 2012, The 2nd Saudi International Nanotechnology Conference, 340

Du, 2006, Nanotechnology, 17, 5314, 10.1088/0957-4484/17/21/005

Gao, 2013, J. Mater. Chem. A, 1, 63, 10.1039/C2TA00386D

Cheng, 2012, Nano Lett., 12, 4206, 10.1021/nl301804c

Zhou, 2013, Nano Lett., 13, 2078, 10.1021/nl400378j

Wang, 2014, Angew. Chem., Int. Ed., 53, 1849, 10.1002/anie.201307581

Wang, 2013, Ionics, 19, 559, 10.1007/s11581-012-0781-1

Xue, 2013, Phys. Chem. Chem. Phys., 15, 8042, 10.1039/c3cp51571k

Gao, 2013, J. Mater. Chem. A, 1, 7168

Dubal, 2013, Energy, 51, 407, 10.1016/j.energy.2012.11.021

Wu, 2012, Adv. Mater., 24, 5130, 10.1002/adma.201201948

Choi, 2011, ACS Nano, 5, 7205, 10.1021/nn202020w

Kang, 2012, Nanotechnology, 23, 289501, 10.1088/0957-4484/23/28/289501