Efficient removal of organic contaminants by a visible light driven photocatalyst Sr6Bi2O9

Chemical Engineering Journal - Tập 162 - Trang 171-177 - 2010
Yanqing Yang1, Gaoke Zhang1, Shujie Yu1, Xiong Shen1
1Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China

Tài liệu tham khảo

Hoffmann, 1995, Environmental applications of semiconductor photocatalysis, J. Chem. Rev., 95, 69, 10.1021/cr00033a004 Chen, 2009, Preparation, characterization and photocatalytic activity of N-containing ZnO powder, Chem. Eng. J., 148, 263, 10.1016/j.cej.2008.08.039 Fujishima, 2000, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C: Photochem. Rev., 1, 1, 10.1016/S1389-5567(00)00002-2 Wang, 2009, Evaluation of bias potential enhanced photocatalytic degradation of 4-chlorophenol with TiO2 nanotube fabricated by anodic oxidation method, Chem. Eng. J., 146, 30, 10.1016/j.cej.2008.05.025 Saien, 2009, Photocatalytic decomposition of direct red 16 and kinetics analysis in a conic body packed bed reactor with nanostructure titania coated Raschig rings, Chem. Eng. J., 151, 295, 10.1016/j.cej.2009.03.011 Wang, 2002, Preparation, characterization and photocatalytic activity of nano-sized ZnO2/SnO2 coupled photocatalysts, Appl. Catal. B: Environ., 39, 269, 10.1016/S0926-3373(02)00115-7 Linsebigler, 1995, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev., 95, 735, 10.1021/cr00035a013 Torimoto, 1996, Effects of adsorbents used as supports for titanium dioxide loading on photocatalytic degradation of propyzamide, Environ. Sci. Technol., 30, 1275, 10.1021/es950483k Choi, 1994, The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics, J. Phys. Chem., 98, 13669, 10.1021/j100102a038 Khan, 2002, Efficient photochemical water splitting by a chemically modified n-TiO2, Science, 297, 2243, 10.1126/science.1075035 Sakthivel, 2003, Daylight photocatalysis by carbon modified titanium dioxide, Angew. Chem. Int. Ed., 42, 4908, 10.1002/anie.200351577 Zhao, 2004, Efficient degradation of toxic organic pollutants with Ni2O3/TiO2−xBx under visible irradiation, J. Am. Chem. Soc., 126, 4782, 10.1021/ja0396753 Anpo, 1997, Photocatalysis on titanium oxide catalysts approaches in achieving highly efficient reactions and realizing the use of visible light, Catal. Surv. Jpn., 1, 169, 10.1023/A:1019024913274 Kudo, 1999, A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties, J. Am. Chem. Soc., 121, 11459, 10.1021/ja992541y Ishikawa, 2002, Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ≤650nm), J. Am. Chem. Soc., 124, 13547, 10.1021/ja0269643 Kim, 2004, Single-phase oxide photocatalyst working under visible light, J. Am. Chem. Soc., 126, 8912, 10.1021/ja049676a Wiegel, 1995, Influence of ns2 ions on the luminescence of niobates and tantalates, J. Mater. Chem., 5, 981, 10.1039/jm9950500981 Kohtani, 2003, Photodegradation of 4-alkylphenols using BiVO4 photocatalyst under irradiation with visible light from a solar simulator, Appl. Catal. B: Environ., 46, 573, 10.1016/S0926-3373(03)00320-5 Harada, 2003, Sonophotocatalysis of water in a CO2–Ar atmosphere, J. Photochem. Photobiol. A: Chem., 160, 11, 10.1016/S1010-6030(03)00214-4 Tokunaga, 2001, Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties, Chem. Mater., 13, 4624, 10.1021/cm0103390 Long, 2006, Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation, J. Phys. Chem. B, 110, 20211, 10.1021/jp063441z Tang, 2004, Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation, Angew. Chem. Int. Ed., 43, 4463, 10.1002/anie.200353594 Fu, 2005, Visible-light-induced degradation of Rhodamine B by nanosized Bi2WO6, J. Phys. Chem. B, 109, 22432, 10.1021/jp052995j Zhang, 2005, Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts, Chem. Mater., 17, 3537, 10.1021/cm0501517 Shimodaira, 2006, Photophysical properties and photocatalytic activities of bismuth molybdates under visible light irradiation, J. Phys. Chem. B, 110, 17790, 10.1021/jp0622482 Kudo, 1999, H2 or O2 evolution from aqueous solution on layered oxide photocatalysts consisting of Bi3+ with 6s2 configuration and d0 transition metal ions, Chem. Lett., 28, 1103, 10.1246/cl.1999.1103 Yao, 2004, Photocatalytic property of bismuth titanate Bi2Ti2O7, Appl. Catal. A: Gen., 259, 29, 10.1016/j.apcata.2003.09.004 Yao, 2004, Photocatalytic property of perovskite bismuth titanate, Appl. Catal. B: Environ., 52, 109, 10.1016/j.apcatb.2004.04.002 Wang, 2005, Surface modification and photocatalytic activity of distorted pyrochlore-type Bi2M (M=In, Ga and Fe)TaO7 photocatalysts, J. Phys. Chem. Solids, 66, 349, 10.1016/j.jpcs.2004.07.014 Zou, 2001, Photocatalytic and photophysical properties of a novel series of solid photocatalysts, BiTa1−xNbxO4(0≤x≤1), Chem. Phys. Lett., 343, 303, 10.1016/S0009-2614(01)00702-3 Zou, 2001, Photocatalytic and photophysical properties of a novel series of solid photocatalysts, Bi2MNbO7 (M=Al3+, Ga3+ and In3+), Chem. Phys. Lett., 333, 57, 10.1016/S0009-2614(00)01348-8 Zhang, 2009, Preparation of nanosized Bi3NbO7 and its visible-light photocatalytic property, J. Hazard. Mater., 172, 986, 10.1016/j.jhazmat.2009.07.089 Ishibashi, 2000, Quantum yields of active oxidative species formed on TiO2 photocatalyst, J. Photochem. Photobiol. A: Chem., 134, 139, 10.1016/S1010-6030(00)00264-1 Hirakawa, 2002, Properties of O2− and OH formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions, Langmuir, 18, 3247, 10.1021/la015685a Salmi, 2004, Kinetic model for the increase of reaction order during polyesterification, Chem. Eng. Proc., 43, 1487, 10.1016/j.cep.2004.01.006 Zhang, 2008, Photocatalytic degradation of 4BS dye by N,S-codoped TiO2 pillared montmorillonite photocatalysts under visible-light irradiation, J. Phys. Chem. C, 112, 17994, 10.1021/jp803939z Wang, 2003, Low-temperature synthesis of β-BiNbO4 powder by citrate sol–gel method, Mater. Lett., 57, 4009, 10.1016/S0167-577X(03)00256-8 Xie, 2003, Synthesis and characterization of Sr1−xBaxBi4Ti4O15 ferroelectric materials, Mater. Sci. Eng. B, 99, 352, 10.1016/S0921-5107(02)00495-6 Lines, 1987, Absolute Raman intensities in glasses. I. Theory, J. Non-Cryst. Solids, 89, 143, 10.1016/S0022-3093(87)80329-0 Lines, 1987, Absolute Raman intensities in glasses. II. Germania-based heavy metal oxides and global criteria, J. Non-Cryst. Solids, 89, 163, 10.1016/S0022-3093(87)80330-7 Rusu, 2008, Structural studies of Fe2O3–Bi2O3–CdO glass system, Mater. Res. Bull., 43, 1724, 10.1016/j.materresbull.2007.07.016 Butler, 1977, Photoelectrolysis and physical properties of the semiconducting electrode WO2, Appl. Phys., 48, 1914, 10.1063/1.323948 Kudo, 2000, Water splitting into H2 andO2 on new Sr2M2O7 (M=Nb and Ta) photocatalysts with layered perovskite structures: factors affecting the photocatalytic activity, J. Phys. Chem. B, 104, 571, 10.1021/jp9919056 Inoue, 1997, Properties of photocatalysts with tunnel structures: formation of a surface lattice O− radical by the UV irradiation of BaTi4O9 with a pentagonal-prism tunnel structure, Chem. Phys. Lett., 267, 72, 10.1016/S0009-2614(97)00061-4 Tang, 2004, Substitution effects of Ca2+ by Sr2+ and Ba2+ on structural properties and photocatalytic behaviors of CaIn2O4, J. Chem. Mater., 16, 1644, 10.1021/cm0353815 Shao, 2008, photocatalytic activity of hierarchically mesoporous–macroporous TiO2−xNx, Appl. Catal. B: Environ., 82, 208, 10.1016/j.apcatb.2008.01.026 Zhang, 2006, Visible light driven photocatalyst of Bi2WO6 nanoparticles prepared via amorphous complex precursor and photocatalytic properties, J. Solid State Chem., 179, 62, 10.1016/j.jssc.2005.09.041 Chen, 1997, Molecular orbital studies of the isomers of 2,4,6-trinitrotoluene and some of its thermal decomposition products, J. Mol. Struct., 397, 21, 10.1016/S0166-1280(96)04988-3 Chen, 1998, Molecular structure of mononitrophenols and their thermal decomposition tautomers, J. Mol. Struct., 428, 257, 10.1016/S0166-1280(97)00289-3 Chen, 2001, Theoretical study of the internal rotational barriers in nitrobenzene, 2-nitrotoluene, 2-nitrophenol, and 2-nitroaniline, Int. J. Quant. Chem., 83, 332, 10.1002/qua.1069 Fu, 2006, Photocatalytic properties of nanosized Bi2WO6 catalysts synthesized via a hydrothermal process, Appl. Catal. B: Environ., 66, 100, 10.1016/j.apcatb.2006.02.022 Weast, 1988 Kim, 2002, Kinetics and mechanisms of photocatalytic degradation of (CH3)nNH4−n+ (0≤n≤4) in TiO2 suspension: the role of OH radicals, Environ. Sci. Technol., 36, 2019, 10.1021/es015560s Li, 2006, Elctrochemically assisted photocatalytic degradation of orange. II. Influence of initial pH values, J. Mol. Catal. A: Chem., 259, 238, 10.1016/j.molcata.2006.06.038 Yoon, 2005, Oxidation mechanism of As(III) in the UV/TiO2 system: evidence for a direct hole oxidation mechanism, Environ. Sci. Technol., 39, 9695, 10.1021/es051148r Bandara, 1999, Fast kinetic spectroscopy, decoloration and production of H2O2 induced by visible light in oxygenated solutions of the azo dye orange II, New J. Chem., 23, 717, 10.1039/a902425e Stylidi, 2004, Visible light-induced photocatalytic degradation of acid orange 7 in aqueous TiO2 suspensions, Appl. Catal. B: Environ., 47, 189, 10.1016/j.apcatb.2003.09.014