Efficient photoredox conversion of alcohol to aldehyde and H2 by heterointerface engineering of bimetal–semiconductor hybrids

Chemical Science - Tập 10 Số 12 - Trang 3514-3522
Chuang Han1,2,3,4,5, Zi‐Rong Tang1,2,3,4, Junxue Liu1,6,7,8,9, Shengye Jin1,6,7,8,9, Yi‐Jun Xu1,2,3,4,5
1China
2College of Chemistry, Fuzhou University, New Campus, Fuzhou, China
3Fuzhou
4Fuzhou University
5State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, China
6Chinese Academy of sciences
7Dalian
8Dalian Institute of Chemical Physics
9State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China

Tóm tắt

An anisotropic bimetal–semiconductor heterostructure with efficient charge carrier generation, transfer and utilization for plasmon-enhanced photoredox catalysis.

Từ khóa


Tài liệu tham khảo

Colmenares, 2014, Chem. Soc. Rev., 43, 765, 10.1039/C3CS60262A

Yang, 2014, Chem. Soc. Rev., 43, 8240, 10.1039/C4CS00213J

Xie, 2013, Adv. Mater., 25, 3820, 10.1002/adma.201301207

Zhang, 2016, Nat. Photonics, 10, 473, 10.1038/nphoton.2016.76

Yin, 2017, Sci. Adv., 3, e1701162, 10.1126/sciadv.1701162

Jiang, 2016, Small, 12, 1640, 10.1002/smll.201503552

Lu, 2018, J. Mater. Chem. A, 6, 4590, 10.1039/C8TA00728D

Chen, 2015, Angew. Chem., Int. Ed., 54, 1210, 10.1002/anie.201410172

Han, 2018, Chem. Sci., 9, 8914, 10.1039/C8SC04479A

Weng, 2018, Nat. Commun., 9, 1543, 10.1038/s41467-018-04020-2

Chen, 2008, Chem. Mater., 20, 7204, 10.1021/cm802074j

Han, 2014, Adv. Funct. Mater., 24, 3725, 10.1002/adfm.201400012

Xiao, 2018, Angew. Chem., Int. Ed., 57, 1103, 10.1002/anie.201711725

Liu, 2017, Energy Environ. Sci., 10, 402, 10.1039/C6EE02265K

Xu, 2018, ACS Catal., 8, 11615, 10.1021/acscatal.8b03233

Zhang, 2018, Chem, 4, 1832, 10.1016/j.chempr.2018.05.005

Zhang, 2016, Chem. Soc. Rev., 45, 3916, 10.1039/C5CS00958H

Huang, 2016, J. Am. Chem. Soc., 138, 6822, 10.1021/jacs.6b02532

Zheng, 2014, J. Am. Chem. Soc., 137, 948, 10.1021/ja511719g

Yin, 2017, RSC Adv., 7, 36923, 10.1039/C7RA06206K

Hung, 2016, Chem. Commun., 52, 1567, 10.1039/C5CC08547K

Li, 2011, J. Am. Chem. Soc., 133, 10878, 10.1021/ja2025454

Grzelczak, 2007, J. Phys. Chem. C, 111, 6183, 10.1021/jp0671502

Zheng, 2014, J. Am. Chem. Soc., 136, 6870, 10.1021/ja502704n

Guo, 2017, J. Am. Chem. Soc., 139, 17964, 10.1021/jacs.7b08903

Bai, 2015, Adv. Mater., 27, 3444, 10.1002/adma.201501200

Lin, 2017, J. Am. Chem. Soc., 139, 2224, 10.1021/jacs.6b09080

Long, 2015, Small, 11, 3873, 10.1002/smll.201403777

Wu, 2018, Sol. RRL, 2, 1800039, 10.1002/solr.201800039

Zhu, 2018, Chem. Mater., 30, 5987, 10.1021/acs.chemmater.8b02172

Han, 2017, Small, 13, 1602947, 10.1002/smll.201602947

Wu, 2016, Nat. Chem., 8, 470, 10.1038/nchem.2473

Li, 2015, Small, 11, 1892, 10.1002/smll.201403058

Li, 2016, Angew. Chem., Int. Ed., 55, 13734, 10.1002/anie.201605666

Ma, 2014, Small, 10, 4664, 10.1002/smll.201401494

Ma, 2016, Adv. Funct. Mater., 26, 6076, 10.1002/adfm.201601651

Han, 2015, Adv. Funct. Mater., 25, 221, 10.1002/adfm.201402443

Hu, 2013, Angew. Chem., Int. Ed., 52, 5636, 10.1002/anie.201301709

Zhang, 2010, Science, 327, 1634, 10.1126/science.1184769

Wang, 2012, Small, 8, 1167, 10.1002/smll.201102287

Ataee-Esfahani, 2010, Chem. Mater., 22, 6310, 10.1021/cm102074w

Suh, 1997, Chem. Phys. Lett., 281, 384, 10.1016/S0009-2614(97)01312-2

Li, 2011, Adv. Funct. Mater., 21, 1788, 10.1002/adfm.201002233

Chai, 2016, J. Am. Chem. Soc., 138, 10128, 10.1021/jacs.6b06860

Xu, 2018, Nano Energy, 49, 363, 10.1016/j.nanoen.2018.04.048

Chen, 2012, J. Phys. Chem. C, 116, 26535, 10.1021/jp309901y

Gao, 2017, Appl. Catal., B, 210, 297, 10.1016/j.apcatb.2017.03.050

Yang, 2017, Nat. Commun., 8, 14224, 10.1038/ncomms14224

Du, 2014, Small, 10, 4727, 10.1002/smll.201402756

Zhang, 2015, Adv. Mater., 27, 5906, 10.1002/adma.201502203

Wang, 2015, Adv. Mater., 27, 2207, 10.1002/adma.201405674

Tanaka, 2013, ACS Catal., 3, 1886, 10.1021/cs400433r

Pu, 2013, Nano Lett., 13, 3817, 10.1021/nl4018385

Tanaka, 2014, J. Am. Chem. Soc., 136, 586, 10.1021/ja410230u

Zhang, 2014, Nanoscale, 6, 5217, 10.1039/C3NR06562F

Chiu, 2018, J. Mater. Chem. A, 6, 4286, 10.1039/C7TA08543E

Li, 2017, ACS Catal., 7, 5391, 10.1021/acscatal.7b01053

Ma, 2015, Adv. Funct. Mater., 25, 898, 10.1002/adfm.201403398

Seo, 2012, J. Am. Chem. Soc., 134, 1221, 10.1021/ja2093663

Meng, 2018, J. Catal., 367, 159, 10.1016/j.jcat.2018.09.003

Weng, 2016, J. Mater. Chem. A, 4, 18366, 10.1039/C6TA07853B

Wang, 2016, J. Mater. Chem. A, 4, 7190, 10.1039/C6TA01838F

Xu, 2015, Adv. Mater. Interfaces, 2, 1500169, 10.1002/admi.201500169

Xiao, 2014, Nanoscale, 6, 6727, 10.1039/C4NR01380H

Samara, 1983, Phys. Rev. B: Condens. Matter Mater. Phys., 27, 3494, 10.1103/PhysRevB.27.3494

Zhang, 2012, J. Phys. Chem. C, 116, 18023, 10.1021/jp303503c

Bai, 2015, Chem. Soc. Rev., 44, 2893, 10.1039/C5CS00064E

Ye, 2013, Nano Lett., 13, 2163, 10.1021/nl400653s

Gomez, 1985, Appl. Opt., 24, 1147, 10.1364/AO.24.001147

Jiang, 2018, J. Catal., 357, 147, 10.1016/j.jcat.2017.10.019

Zhang, 2014, ACS Nano, 8, 623, 10.1021/nn405242t