Efficient pavement crack detection and classification
Tóm tắt
Từ khóa
Tài liệu tham khảo
M Ann, P Johnson, Best Practices Handbook on asphalt pavement maintenance.Minnesota Technology Transfer (T2) Center / LTAP Program (2000). http://www.cee.mtu.edu/~balkire/CE5403/AsphaltPaveMaint.pdf .
P Bo, Review on automatic pavement crack image recognition algorithms. Pattern Recogn. 46(2), 133–144 (2015). doi: 10.1111/j.1551-2916.2005.00743.x .
G Bradski, Others, The OpenCV library. Doctor Dobbs J. 25(11), 120–126 (2000).
J Canny, A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986). doi: 10.1109/TPAMI.1986.4767851 .
G Deng, L Cahill, G Tobin, The study of logarithmic image processing model and its application to image enhancement. IEEE Trans. Image Process. 4(4), 506–512 (1995). doi: 10.1109/83.370681 .
TD Donald Walker, Pavement Surface Evaluation and Rating (PASER) Manuals (Wisconsin Transportation Information Center, Wisconsin, 2002). http://www.apa-mi.org/docs/Asphalt-PASERManual.pdf .
J Dorsey, Fast Bilateral Filtering for the Display of High-Dynamic-Range Images. Vine.21(3), 257–266 (2001).
M Hall, E Frank, G Holmes, B Pfahringer, P Reutemann, IH Witten, The WEKA data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009). doi: 10.1145/1656274.1656278 , http://doi.acm.org/10.1145/1656274.1656278 .
Y Huang, B Xu, Automatic inspection of pavement cracking distress. J. Electron. Imaging. 15(1), 013–017 (2006). doi: 10.1117/1.2177650 .
P Kalansuriya, R Bhattacharyya, S Sarma, RFID tag antenna-based sensing for pervasive surface crack detection. IEEE Sensors J. 13(5), 1564–1570 (2013). doi: 10.1109/JSEN.2013.2240155 .
RK Kay, Pavement Surface Condition - Rating Manual. Northwest Technologies Transfer Center. Northwest Technologies Transfer Center. Washington State Department of Transportation, (Washington, 1992).
A Laghrib, A Hakim, S Raghay, A combined total variation and bilateral filter approach for image robust super resolution. EURASIP J. Image Video Process. 2015(1), 19 (2015). doi: 10.1186/s13640-015-0075-4 .
JS Lee, Digital image enhancement and noise filtering by use of local statistics (1980). doi: 10.1109/TPAMI.1980.4766994 .
J Lee, B Nam, M Abdel-aty, Effects of pavement surface conditions on traffic crash severity. J. Transp. Eng. 11:, 1–11 (1996). doi: 10.1061/(ASCE)TE.1943-5436.0000785 .
L Li, L Sun, G Ning, S Tan, Automatic pavement crack recognition based on Bp neural network. PROMET-Traffic Transp. 26(1), 11–22 (2014).
Q Li, Q Zou, D Zhang, Q Mao, FoSA: F* seed-growing approach for crack-line detection from pavement images. Image Vis. Comput. 29(12), 861–872 (2011). doi: 10.1016/j.imavis.2011.10.003 .
A Manzanera, TP Nguyen, X Xu, Line and circle detection using dense one-to-one Hough transforms on greyscale images. EURASIP J. Image Video Process. 2016(1), 46 (2016). doi: 10.1186/s13640-016-0149-y .
G Medioni, MS Lee, Tensor Voting : Theory and Applications.Congres francophone sur la Reconnaissance des Formes et l’Intelligence Artificielle (RFIA) (Northwest Technologies Transfer Center. Washington State Department of Transportation, Paris, 2000).
JS Miller, RB Rogers, GR Rada, in Distress Identification Manual for the Long-Term Pavement Performance Project. Appendiz A - Pavement Distress Types and Causes (National Cooperative Highway Research Program, At NW Washington, 1993), pp. 1–31.
NHTSA, National Motor Vehicle Crash Causation Survey Report to Congress, (2008). http://www-nrd.nhtsa.dot.gov/Pubs/811059.PDF , Accessed Jan 2017.
A Ouyang, C Luo, C Zhou, Surface distresses detection of pavement based on digital image processing. IFIP Adv. Inf. Commun. Technol. 347 AICT(PART 4), 368–375 (2011). doi: 10.1007/978-3-642-18369-0_42 .
R Palomar, JM Palomares, JM Castillo, J Olivares, J Gomez-Luna, Parallelizing and optimizing LIP-Canny using NVIDIA CUDA. Lect. Notes Comput. Sci. 6098 LNAI(PART 3), 389–398 (2010). doi: 10.1007/978-3-642-13033-5_40 .
JM Palomares, J González, E Ros, in AERFAI 2005. Detección de bordes en imágenes con sombras mediante LIP–Canny (Simposio de Reconocimiento de Formas y Análisis de Imágenes, AERFAI’2005, At Granada, 2005).
DS Pandya, Ma Zaveri, A novel framework for semantic analysis of an illumination-variant soccer video. EURASIP J. Image Video Process. 2014(1), 49 (2014). doi: 10.1186/1687-5281-2014-49 .
S Paris, A fast approximation of the bilateral filter. Int. J. Comput. Vis. 81:, 24–52 (2009). doi: 10.1007/s11263-007-0110-8 .
JR Quinlan, Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986). doi: 10.1023/A:1022643204877 . http://dx.doi.org/10.1023/A:1022643204877
JR Quinlan, C4.5: Programs for Machine Learning (Morgan Kaufmann Publishers Inc., San Francisco, 1993).
PA Serigos, SM Asce, JA Prozzi, M Asce, Smit ADF, Murphy MR, Evaluation of 3D automated systems for the measurement of pavement surface cracking. J Transp. Eng, 1–8 (2012). doi: 10.1061/(ASCE)TE.1943-5436.0000841 .
P Subirats, J Dumoulin, Automation of pavement surface crack detection using the continuous wavelet transform. Image Process. 1(1), 3037–3040 (2006).
C Tomasi, R Manduchi, Bilateral filtering for gray and color images. Int. Conf. Comput. Vision, 839–846 (1998). doi: 10.1109/ICCV.1998.710815 .
KCP Wang, W Gong, Real-time automated survey system of pavement cracking in parallel environment. J Infrastruct. Syst. September:, 154–164 (2005). doi: 10.1061/?ASCE?1076-0342?2005?11:3?154? .
Y Wang, C He, Image segmentation algorithm by piecewise smooth approximation. EURASIP J. Image Video Process.1–13 (2012). doi: 10.1186/1687-5281-2012-16 .
C Yan, Y Zhang, J Xu, F Dai, L Li, Q Dai, F Wu, A highly parallel framework for HEVC coding unit partitioning tree decision on many-core processors. IEEE Signal Process. Lett. 21(5), 573–576 (2014a). doi: 10.1109/LSP.2014.2310494 .
C Yan, Y Zhang, J Xu, F Dai, J Zhang, Q Dai, F Wu, Efficient parallel framework for HEVC motion estimation on many-core processors. IEEE Trans. Circ. Syst. Video Technol. 24(12), 2077–2089 (2014b). doi: 10.1109/TCSVT.2014.2335852 .