Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm
Tóm tắt
Từ khóa
Tài liệu tham khảo
Farmani, R., Savic, D., Walters, G.: Evolutionary multi-objective optimization in water distribution network design. Eng. Optim. 37(2), 167–183 (2005)
Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)
Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York (1991)
Kennedy, J.: Particle swarm optimization. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 760–766. Springer, Berlin (2011)
Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Stat. Sci. 4(4), 409–423 (1989)
Simpson, T.W., Booker, A.J., Ghosh, D., Giunta, A.A., Koch, P.N., Yang, R.-J.: Approximation methods in multidisciplinary analysis and optimization: a panel discussion. Struct. Multidiscipl. Optim. 27(5), 302–313 (2004)
McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42(1), 55–61 (2000)
Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N.: Taking the human out of the loop: a review of bayesian optimization. Proc. IEEE 104(1), 148–175 (2016)
Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)
Močkus, J.: On Bayesian methods for seeking the extremum. In: Optimization Techniques IFIP Technical Conference, pp. 400–404. Springer (1975)
Łaniewski-Wołłk, Ł.: Relative Expected Improvement in Kriging Based Optimization. arXiv preprint arXiv:0908.3321 (2009)
Jones, D.R.: A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 21(4), 345–383 (2001)
Forrester, A.I., Keane, A.J.: Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 45(1), 50–79 (2009)
Voutchkov, I., Keane, A.: Multi-objective optimization using surrogates. In: Tenne, Y., Goh, C.K. (eds.) Computational Intelligence in Optimization, pp. 155–175. Springer, Berlin (2010)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Knowles, J.: ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Trans. Evol. Comput. 10(1), 50–66 (2006)
Ponweiser, W., Wagner, T., Biermann, D., Vincze, M.: Multiobjective optimization on a limited budget of evaluations using model-assisted $$\backslash $$ \ mathcal S-Metric selection. In: International Conference on Parallel Problem Solving from Nature, pp. 784–794. Springer (2008)
Kushner, H.J.: A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. J. Basic Eng. 86(1), 97–106 (1964)
Keane, A.J.: Statistical improvement criteria for use in multiobjective design optimization. AIAA J. 44(4), 879–891 (2006)
Emmerich, M., Klinkenberg, J.-W.: The computation of the expected improvement in dominated hypervolume of Pareto front approximations. Rapport technique, Leiden University (2008)
Emmerich, M.: Single-and multi-objective evolutionary design optimization assisted by gaussian random field metamodels. Ph.D. thesis, University of Dortmund (2005)
Emmerich, M., Deutz, A., Klinkenberg, J.-W.: Hypervolume-based expected improvement: monotonicity properties and exact computation. In: IEEE Congress on Evolutionary Computation, pp. 2147–2154. IEEE (2011)
Hupkens, I., Emmerich, M., Deutz, A.: Faster Computation of Expected Hypervolume Improvement. arXiv preprint arXiv:1408.7114 (2014)
Emmerich, M., Yang, K., Deutz, A., Wang, H., Fonseca, C.M.: A multicriteria generalization of bayesian global optimization. In: Pardalos, P., Zhigljavsky, A., Žilinskas, J. (eds.) Advances in Stochastic and Deterministic Global Optimization, pp. 229–242. Springer, Berlin (2016)
Yang, K., Emmerich, M., Deutz, A., Fonseca, C.M.: Computing 3-D expected hypervolume improvement and related integrals in asymptotically optimal time. In: International Conference on Evolutionary Multi-Criterion Optimization, pp. 685–700. Springer (2017)
Thompson, W.R.: On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika 25(3/4), 285–294 (1933)
Zhigljavsky, A., Zilinskas, A.: Stochastic Global Optimization, vol. 9. Springer, Berlin (2007)
Žilinskas, A.: A statistical model-based algorithm for ‘black-box’multi-objective optimisation. Int. J. Syst. Sci. 45(1), 82–93 (2014)
Helmdach, D., Yaseneva, P., Heer, P.K., Schweidtmann, A.M., Lapkin, A.: A multi-objective optimisation including results of life cycle assessment in developing bio-renewables-based processes. ChemSusChem 10(18), 3632–3643 (2017)
Rasmussen, C.E.: Gaussian processes in machine learning. In: Bousquet, O., VonLuxburg, U., Ratsch, G. (eds.) Advanced Lectures on Machine Learning. Lecture Notes in Artificial Intelligence, vol. 3176, pp. 63–71 (2004)
Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2005)
Ebden, M.: Gaussian processes: a quick introduction. arXiv preprint arXiv:1505.02965 (2015)
Rasmussen, C.E.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)
Yang, X., Maciejowski, J.M.: Fault tolerant control using Gaussian processes and model predictive control. Int. J. Appl. Math. Comput. Sci. 25(1), 133–148 (2015)
Matérn, B.: Spatial Variation, vol. 36. Springer, Berlin (2013)
Sundararajan, S., Keerthi, S.S.: Predictive approaches for choosing hyperparameters in Gaussian processes. Neural Comput. 13(5), 1103–1118 (2001)
Hernández-Lobato, J.M., Hoffman, M.W., Ghahramani, Z.: Predictive entropy search for efficient global optimization of black-box functions. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27, vol. 1, pp. 918–926. MIT Press, Cambridge (2014)
Rahimi, A., Recht, B.: Random features for large-scale kernel machines. In: Platt, J.C., Koller, D., Singer, Y., Roweis, S.T. (eds.) Advances in Neural Information Processing Systems 20, pp. 1177–1184. MIT Press, Cambridge (2007)
Lázaro-Gredilla, M., Quiñonero-Candela, J., Rasmussen, C.E., Figueiras-Vidal, A.R.: Sparse spectrum Gaussian process regression. J. Mach. Learn. Res. 11(6), 1865–1881 (2010)
Chapelle, O., Li, L.: An empirical evaluation of Thompson sampling. In: Shawe-Taylor, J., Zemel, R.S., Bartlett, P.L., Pereira, F., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 24, pp. 2249–2257. MIT Press, Cambridge (2011)
Scott, S.L.: A modern Bayesian look at the multi-armed bandit. Appl. Stoch. Models Bus. Ind. 26(6), 639–658 (2010)
Shahriari, B., Wang, Z., Hoffman, M.W., Bouchard-Côté, A., de Freitas, N.: An entropy search portfolio for Bayesian optimization. arXiv preprint arXiv:1406.4625 (2014)
Kaufmann, E., Korda, N., Munos, R.: Thompson sampling: an asymptotically optimal finite-time analysis. In: International Conference on Algorithmic Learning Theory, pp. 199–213. Springer (2012)
Agrawal, S., Goyal, N.: Thompson sampling for contextual bandits with linear payoffs. In: 30th International Conference on Machine Learning (ICML-13), pp. 127–135 (2013)
Yahyaa, S., Manderick, B.: Thompson sampling for multi-objective multi-armed bandits problem. In: 2015 European Symposium on Artificial Neural Networks, pp. 47–52. Presses universitaires de Louvain (2015)
Stein, M.: Large sample properties of simulations using Latin hypercube sampling. Technometrics 29(2), 143–151 (1987)
Emmerich, M., Fonseca, C.: Computing hypervolume contributions in low dimensions: asymptotically optimal algorithm and complexity results. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) Evolutionary Multi-Criterion Optimization, pp. 121–135. Springer, Berlin (2011)
Bader, J., Deb, K., Zitzler, E.: Faster hypervolume-based search using Monte Carlo sampling. In: Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems: Proceedings of the 19th International Conference on Multiple Criteria Decision Making. pp. 313–326. Springer, Berlin (2010)
Finkel, D.E.: DIRECT Optimization Algorithm User Guide. http://www4.ncsu.edu/~ctk/Finkel_Direct/DirectUserGuide_pdf.pdf . Accessed 26 Nov 2017 (2003)
Lin, S.: NGPM a NSGA-II Program in Matlab. Codelooker. http://www.codelooker.com/dfilec/6987NGPMv11.4/NGPMmanualv1.4.pdf . Accessed 26 Nov 2017 (2011)
Rasmussen, C.E., Nickisch, H.: The GPML Toolbox Version 3.5. http://mlg.eng.cam.ac.uk/carl/gpml/doc/manual.pdf . Accessed 26 Nov 2017 (2014)
Yi, C.: Pareto Set. Matlab File Exchange. https://se.mathworks.com/matlabcentral/fileexchange/15181-pareto-set . Accessed 26 Nov 2017 (2014)
Yi, C.: Hypervolume Indicator. Matlab File Exchange. https://se.mathworks.com/matlabcentral/fileexchange/19651-hypervolume-indicator . Accessed 26 Nov 2017 (2008)
Bradford, E., Schweidtmann, A.M.: TS-EMO. GitHub. https://github.com/Eric-Bradford/TS-EMO . Accessed 29 Nov 2017 (2017)
Schaffer, J.D.: Some Experiments in Machine Learning Using Vector Evaluated Genetic Algorithms. Vanderbilt University, Nashville (1985)
Cristescu, C.: ParEGO_Eigen. GitHub. https://github.com/CristinaCristescu/ParEGO_Eigen/graphs/contributors . Accessed 26 Nov 2017 (2015)
Gorissen, D., Couckuyt, I., Demeester, P., Dhaene, T., Crombecq, K.: A surrogate modeling and adaptive sampling toolbox for computer based design. J. Mach. Learn. Res 11(Jul), 2051–2055 (2010)
Cristescu, C., Knowles, J.: Surrogate-Based Multiobjective Optimization: ParEGO Update and Test
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)
Knowles, J., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastic multiobjective optimizers. Tik Rep. 214, 327–332 (2006)
Riquelme, N., Von Lücken, C., Baran, B.: Performance metrics in multi-objective optimization. In: Computing Conference (CLEI), 2015 Latin American, pp. 1–11. IEEE (2015)
Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified Distance Calculation in Generational Distance and Inverted Generational Distance. Springer, Cham (2015)
Zhou, A., Jin, Y., Zhang, Q., Sendhoff, B., Tsang, E.: Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion. In: IEEE Congress on Evolutionary Computation, 2006 (CEC 2006), pp. 892–899. IEEE
Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. ETH Zurich, Zurich (1999)
Jiang, S., Ong, Y.-S., Zhang, J., Feng, L.: Consistencies and contradictions of performance metrics in multiobjective optimization. IEEE Trans. Cybern. 44(12), 2391–2404 (2014)
Fonseca, C.M., Fleming, P.J.: On the performance assessment and comparison of stochastic multiobjective optimizers. In: International Conference on Parallel Problem Solving from Nature, pp. 584–593. Springer (1996)