Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm

Eric Bradford1,2, Artur M. Schweidtmann3,1, Alexei A. Lapkin1
1Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
2Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway
3Aachener Verfahrenstechnik - Process Systems Engineering, RWTH Aachen University, Aachen, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Farmani, R., Savic, D., Walters, G.: Evolutionary multi-objective optimization in water distribution network design. Eng. Optim. 37(2), 167–183 (2005)

Censor, Y.: Pareto optimality in multiobjective problems. Appl. Math. Optim. 4(1), 41–59 (1977)

Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

Ehrgott, M.: Multiobjective optimization. AI Mag. 29(4), 47 (2009)

Hwang, C.-R.: Simulated annealing: theory and applications. Acta Appl. Math. 12(1), 108–111 (1988)

Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York (1991)

Kennedy, J.: Particle swarm optimization. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 760–766. Springer, Berlin (2011)

Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Stat. Sci. 4(4), 409–423 (1989)

Simpson, T.W., Booker, A.J., Ghosh, D., Giunta, A.A., Koch, P.N., Yang, R.-J.: Approximation methods in multidisciplinary analysis and optimization: a panel discussion. Struct. Multidiscipl. Optim. 27(5), 302–313 (2004)

McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42(1), 55–61 (2000)

Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N.: Taking the human out of the loop: a review of bayesian optimization. Proc. IEEE 104(1), 148–175 (2016)

Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)

Močkus, J.: On Bayesian methods for seeking the extremum. In: Optimization Techniques IFIP Technical Conference, pp. 400–404. Springer (1975)

Łaniewski-Wołłk, Ł.: Relative Expected Improvement in Kriging Based Optimization. arXiv preprint arXiv:0908.3321 (2009)

Jones, D.R.: A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 21(4), 345–383 (2001)

Forrester, A.I., Keane, A.J.: Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 45(1), 50–79 (2009)

Voutchkov, I., Keane, A.: Multi-objective optimization using surrogates. In: Tenne, Y., Goh, C.K. (eds.) Computational Intelligence in Optimization, pp. 155–175. Springer, Berlin (2010)

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

Knowles, J.: ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Trans. Evol. Comput. 10(1), 50–66 (2006)

Ponweiser, W., Wagner, T., Biermann, D., Vincze, M.: Multiobjective optimization on a limited budget of evaluations using model-assisted $$\backslash $$ \ mathcal S-Metric selection. In: International Conference on Parallel Problem Solving from Nature, pp. 784–794. Springer (2008)

Kushner, H.J.: A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. J. Basic Eng. 86(1), 97–106 (1964)

Keane, A.J.: Statistical improvement criteria for use in multiobjective design optimization. AIAA J. 44(4), 879–891 (2006)

Emmerich, M., Klinkenberg, J.-W.: The computation of the expected improvement in dominated hypervolume of Pareto front approximations. Rapport technique, Leiden University (2008)

Emmerich, M.: Single-and multi-objective evolutionary design optimization assisted by gaussian random field metamodels. Ph.D. thesis, University of Dortmund (2005)

Emmerich, M., Deutz, A., Klinkenberg, J.-W.: Hypervolume-based expected improvement: monotonicity properties and exact computation. In: IEEE Congress on Evolutionary Computation, pp. 2147–2154. IEEE (2011)

Hupkens, I., Emmerich, M., Deutz, A.: Faster Computation of Expected Hypervolume Improvement. arXiv preprint arXiv:1408.7114 (2014)

Emmerich, M., Yang, K., Deutz, A., Wang, H., Fonseca, C.M.: A multicriteria generalization of bayesian global optimization. In: Pardalos, P., Zhigljavsky, A., Žilinskas, J. (eds.) Advances in Stochastic and Deterministic Global Optimization, pp. 229–242. Springer, Berlin (2016)

Yang, K., Emmerich, M., Deutz, A., Fonseca, C.M.: Computing 3-D expected hypervolume improvement and related integrals in asymptotically optimal time. In: International Conference on Evolutionary Multi-Criterion Optimization, pp. 685–700. Springer (2017)

Thompson, W.R.: On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika 25(3/4), 285–294 (1933)

Zhigljavsky, A., Zilinskas, A.: Stochastic Global Optimization, vol. 9. Springer, Berlin (2007)

Žilinskas, A.: A statistical model-based algorithm for ‘black-box’multi-objective optimisation. Int. J. Syst. Sci. 45(1), 82–93 (2014)

Helmdach, D., Yaseneva, P., Heer, P.K., Schweidtmann, A.M., Lapkin, A.: A multi-objective optimisation including results of life cycle assessment in developing bio-renewables-based processes. ChemSusChem 10(18), 3632–3643 (2017)

Rasmussen, C.E.: Gaussian processes in machine learning. In: Bousquet, O., VonLuxburg, U., Ratsch, G. (eds.) Advanced Lectures on Machine Learning. Lecture Notes in Artificial Intelligence, vol. 3176, pp. 63–71 (2004)

Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2005)

Ebden, M.: Gaussian processes: a quick introduction. arXiv preprint arXiv:1505.02965 (2015)

Rasmussen, C.E.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

Yang, X., Maciejowski, J.M.: Fault tolerant control using Gaussian processes and model predictive control. Int. J. Appl. Math. Comput. Sci. 25(1), 133–148 (2015)

Matérn, B.: Spatial Variation, vol. 36. Springer, Berlin (2013)

Sundararajan, S., Keerthi, S.S.: Predictive approaches for choosing hyperparameters in Gaussian processes. Neural Comput. 13(5), 1103–1118 (2001)

Hernández-Lobato, J.M., Hoffman, M.W., Ghahramani, Z.: Predictive entropy search for efficient global optimization of black-box functions. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27, vol. 1, pp. 918–926. MIT Press, Cambridge (2014)

Bochner, S.: Lectures on Fourier Integrals, vol. 42. Princeton University Press, Princeton (1959)

Rahimi, A., Recht, B.: Random features for large-scale kernel machines. In: Platt, J.C., Koller, D., Singer, Y., Roweis, S.T. (eds.) Advances in Neural Information Processing Systems 20, pp. 1177–1184. MIT Press, Cambridge (2007)

Lázaro-Gredilla, M., Quiñonero-Candela, J., Rasmussen, C.E., Figueiras-Vidal, A.R.: Sparse spectrum Gaussian process regression. J. Mach. Learn. Res. 11(6), 1865–1881 (2010)

Chapelle, O., Li, L.: An empirical evaluation of Thompson sampling. In: Shawe-Taylor, J., Zemel, R.S., Bartlett, P.L., Pereira, F., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 24, pp. 2249–2257. MIT Press, Cambridge (2011)

Scott, S.L.: A modern Bayesian look at the multi-armed bandit. Appl. Stoch. Models Bus. Ind. 26(6), 639–658 (2010)

Shahriari, B., Wang, Z., Hoffman, M.W., Bouchard-Côté, A., de Freitas, N.: An entropy search portfolio for Bayesian optimization. arXiv preprint arXiv:1406.4625 (2014)

Kaufmann, E., Korda, N., Munos, R.: Thompson sampling: an asymptotically optimal finite-time analysis. In: International Conference on Algorithmic Learning Theory, pp. 199–213. Springer (2012)

Agrawal, S., Goyal, N.: Thompson sampling for contextual bandits with linear payoffs. In: 30th International Conference on Machine Learning (ICML-13), pp. 127–135 (2013)

Yahyaa, S., Manderick, B.: Thompson sampling for multi-objective multi-armed bandits problem. In: 2015 European Symposium on Artificial Neural Networks, pp. 47–52. Presses universitaires de Louvain (2015)

Stein, M.: Large sample properties of simulations using Latin hypercube sampling. Technometrics 29(2), 143–151 (1987)

Emmerich, M., Fonseca, C.: Computing hypervolume contributions in low dimensions: asymptotically optimal algorithm and complexity results. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) Evolutionary Multi-Criterion Optimization, pp. 121–135. Springer, Berlin (2011)

Bader, J., Deb, K., Zitzler, E.: Faster hypervolume-based search using Monte Carlo sampling. In: Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems: Proceedings of the 19th International Conference on Multiple Criteria Decision Making. pp. 313–326. Springer, Berlin (2010)

Finkel, D.E.: DIRECT Optimization Algorithm User Guide. http://www4.ncsu.edu/~ctk/Finkel_Direct/DirectUserGuide_pdf.pdf . Accessed 26 Nov 2017 (2003)

Lin, S.: NGPM a NSGA-II Program in Matlab. Codelooker. http://www.codelooker.com/dfilec/6987NGPMv11.4/NGPMmanualv1.4.pdf . Accessed 26 Nov 2017 (2011)

Rasmussen, C.E., Nickisch, H.: The GPML Toolbox Version 3.5. http://mlg.eng.cam.ac.uk/carl/gpml/doc/manual.pdf . Accessed 26 Nov 2017 (2014)

Yi, C.: Pareto Set. Matlab File Exchange. https://se.mathworks.com/matlabcentral/fileexchange/15181-pareto-set . Accessed 26 Nov 2017 (2014)

Yi, C.: Hypervolume Indicator. Matlab File Exchange. https://se.mathworks.com/matlabcentral/fileexchange/19651-hypervolume-indicator . Accessed 26 Nov 2017 (2008)

Bradford, E., Schweidtmann, A.M.: TS-EMO. GitHub. https://github.com/Eric-Bradford/TS-EMO . Accessed 29 Nov 2017 (2017)

Schaffer, J.D.: Some Experiments in Machine Learning Using Vector Evaluated Genetic Algorithms. Vanderbilt University, Nashville (1985)

Cristescu, C.: ParEGO_Eigen. GitHub. https://github.com/CristinaCristescu/ParEGO_Eigen/graphs/contributors . Accessed 26 Nov 2017 (2015)

Gorissen, D., Couckuyt, I., Demeester, P., Dhaene, T., Crombecq, K.: A surrogate modeling and adaptive sampling toolbox for computer based design. J. Mach. Learn. Res 11(Jul), 2051–2055 (2010)

Cristescu, C., Knowles, J.: Surrogate-Based Multiobjective Optimization: ParEGO Update and Test

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

Knowles, J., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastic multiobjective optimizers. Tik Rep. 214, 327–332 (2006)

Riquelme, N., Von Lücken, C., Baran, B.: Performance metrics in multi-objective optimization. In: Computing Conference (CLEI), 2015 Latin American, pp. 1–11. IEEE (2015)

Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified Distance Calculation in Generational Distance and Inverted Generational Distance. Springer, Cham (2015)

Zhou, A., Jin, Y., Zhang, Q., Sendhoff, B., Tsang, E.: Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion. In: IEEE Congress on Evolutionary Computation, 2006 (CEC 2006), pp. 892–899. IEEE

Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. ETH Zurich, Zurich (1999)

Jiang, S., Ong, Y.-S., Zhang, J., Feng, L.: Consistencies and contradictions of performance metrics in multiobjective optimization. IEEE Trans. Cybern. 44(12), 2391–2404 (2014)

Fonseca, C.M., Fleming, P.J.: On the performance assessment and comparison of stochastic multiobjective optimizers. In: International Conference on Parallel Problem Solving from Nature, pp. 584–593. Springer (1996)

Knowles, J.: A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective optimizers. In: 5th International Conference on Intelligent Systems Design and Applications, 2005, pp. 552–557. IEEE (2005)