Efficient matrix-free GPU implementation of Fixed Grid Finite Element Analysis

Finite Elements in Analysis and Design - Tập 104 - Trang 61-71 - 2015
Jesús Martínez-Frutos1, David Herrero-Pérez1
1Department of Structures and Construction, Technical University of Cartagena, Campus Muralla del Mar, 30202 Cartagena (Murcia), Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

Schaller, 1997, Moores law, IEEE Spectr., 34, 53

Venkataraman, 2004, Structural optimization complexity, Struct. Multidiscip. Optim., 28, 375, 10.1007/s00158-004-0415-y

Shan, 2010, Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions, Struct. Multidiscip. Optim., 41, 219, 10.1007/s00158-009-0420-2

Koric, 2014, Evaluation of massively parallel linear sparse solvers on unstructured finite element meshes, Comput. Struct., 141, 19, 10.1016/j.compstruc.2014.05.009

Liu, 2007, A distributed memory parallel element-by-element scheme based on Jacobi-conditioned conjugate gradient for 3D finite element analysis, Finite Elem. Anal. Des., 43, 494, 10.1016/j.finel.2006.12.007

Paszyński, 2010, A parallel direct solver for the self-adaptive hp Finite Element Method, J. Parallel Distrib. Comput., 70, 270, 10.1016/j.jpdc.2009.09.007

Manguoglu, 2011, A domain-decomposing parallel sparse linear system solver, J. Comput. Appl. Math., 236, 319, 10.1016/j.cam.2011.07.017

Gullerud, 2001, MPI-based implementation of a PCG solver using an EBE architecture and preconditioner for implicit, 3-D finite element analysis, Comput. Struct., 79, 553, 10.1016/S0045-7949(00)00153-X

Xu, 2011, FSAI preconditioned CG algorithm combined with GPU technique for the finite element analysis of electromagnetic scattering problems, Finite Elem. Anal. Des., 47, 387, 10.1016/j.finel.2010.11.005

Garcia, 2011, Fluid–structure coupling using lattice-Boltzmann and fixed-grid FEM, Finite Elem. Anal. Des., 47, 906, 10.1016/j.finel.2011.03.010

Pezoa, 2012, Three applications of GPU computing in neuroscience, Comput. Sci. Eng., 14, 40, 10.1109/MCSE.2011.119

Yokota, 2012, Hierarchical N-body simulations with autotuning for heterogeneous systems, Comput. Sci. Eng., 14, 30, 10.1109/MCSE.2012.1

Michéa, 2010, Accelerating a three-dimensional finite-difference wave propagation code using GPU graphics cards, Geophys. J. Int., 182, 389

Zegard, 2013, Toward GPU accelerated topology optimization on unstructured meshes, Struct. Multidiscip. Optim., 48, 473, 10.1007/s00158-013-0920-y

Pratx, 2011, GPU computing in medical physics, Med. Phys., 38, 2685, 10.1118/1.3578605

Brodtkorb, 2013, Graphics Processing Unit (GPU) programming strategies and trends in GPU computing, J. Parallel Distrib. Comput., 73, 4, 10.1016/j.jpdc.2012.04.003

Owens, 2007, A survey of general-purpose computation on graphics hardware, Comput. Gr. Forum, 26, 80, 10.1111/j.1467-8659.2007.01012.x

M. Rumpf, R. Strzodka, Graphics processor units: new prospects for parallel computing, in: A. Bruaset, A. Tveito (Eds.), Numerical Solution of Partial Differential Equations on Parallel Computers, volume 51 of Lecture Notes in Computational Science and Engineering, Springer, Berlin, Heidelberg, 2006, pp. 89–132.

Dziekonski, 2012, Finite element matrix generation on a GPU, Prog. Electromagn. Res., 128, 249, 10.2528/PIER12040301

Cecka, 2011, Assembly of Finite Element Methods on graphics processors, Int. J. Numer. Methods Eng., 85, 640, 10.1002/nme.2989

Markall, 2013, Finite element assembly strategies on multi-core and many-core architectures, Int. J. Numer. Methods Fluids, 71, 80, 10.1002/fld.3648

D. Göddeke, R. Strzodka, S. Turek, Accelerating double precision FEM simulations with GPUs, in:Proceedings of ASIM, Erlangen, Germany, 2005, pp. 139–144.

Göddeke, 2008, Using GPUs to improve multigrid solver performance on a cluster, Int. J. Comput. Syst. Sci. Eng., 4, 36, 10.1504/IJCSE.2008.021111

Bolz, 2003, Sparse matrix solvers on the GPU, ACM Trans. Gr., 22, 917, 10.1145/882262.882364

J. Rodriguez-Navarro, A. Susin, Nonstructured meshes for cloth GPU simulation using FEM, in: Workshop on Virtual Reality Interactions and Physical Simulations, Madrid, Spain, 2006, pp. 1–7.

Klöckner, 2009, Nodal discontinuous Galerkin methods on graphics processors, J. Comput. Phys., 228, 7863, 10.1016/j.jcp.2009.06.041

Komatitsch, 2009, Porting a high-order finite-element earthquake modeling application to NVIDIA graphics cards using CUDA, J. Parallel Distrib. Comput., 69, 451, 10.1016/j.jpdc.2009.01.006

Fu, 2014, Architecting the Finite Element Method pipeline for the GPU, J. Comput. Appl. Math., 257, 195, 10.1016/j.cam.2013.09.001

Hackbusch, 2005, Direct Schur complement method by domain decomposition based on H-matrix approximation, Comput. Vis. Sci., 8, 179, 10.1007/s00791-005-0008-3

Carey, 1986, Element-by-element linear and nonlinear solution schemes, Commun. Appl. Numer. Methods, 2, 145, 10.1002/cnm.1630020205

Kiss, 2012, Parallel realization of the element-by-element FEM Technique by CUDA, IEEE Trans. Magn., 48, 507, 10.1109/TMAG.2011.2175905

Muller¨, 2013, Matrix-free GPU implementation of a preconditioned conjugate gradient solver for anisotropic elliptic PDEs, Comput. Vis. Sci., 16, 41, 10.1007/s00791-014-0223-x

R. Carvalho, C. Martins, R. Batalha, A. Camargos, 3D parallel conjugate gradient solver optimized for GPUs, in: Proceedings of IEEE Conference on Electromagnetic Field Computation, Chicago, IL, USA, 2010.

Dehnavi, 2011, Enhancing the performance of conjugate gradient solvers on graphic processing units, IEEE Trans. Magn., 47, 1162, 10.1109/TMAG.2010.2081662

Helfenstein, 2012, Parallel preconditioned conjugate gradient algorithm on GPU, J. Comput. Appl. Math., 236, 3584, 10.1016/j.cam.2011.04.025

Li, 2013, GPU-accelerated preconditioned iterative linear solvers, J. Supercomput., 63, 443, 10.1007/s11227-012-0825-3

Sharma, 2013, A fast parallel Gauss Jordan algorithm for matrix inversion using CUDA, Comput. Struct., 128, 31, 10.1016/j.compstruc.2013.06.015

M. Ament, G. Knittel, D. Weiskopf, W. Strasser, A parallel preconditioned conjugate gradient solver for the Poisson problem on a multi-GPU platform, in: Proceedings of IEEE Conference on Parallel, Distributed and Network-Based Processing, Pisa, Italy, 2010, pp. 583–592.

Suresh, 2013, Efficient generation of large-scale pareto-optimal topologies, Struct. Multidiscip. Optim., 47, 49, 10.1007/s00158-012-0807-3

Martínez-Frutos, 2015, Fine-grained GPU implementation of assembly-free iterative solver for finite element problems, Comput. Struct., 157, 9, 10.1016/j.compstruc.2015.05.010

Cai, 2013, A parallel node-based solution scheme for implicit Finite Element Method using GPU, Procedia Eng., 61, 318, 10.1016/j.proeng.2013.08.022

Voller, 1990, Fixed grid techniques for phase change problems, Int. J. Numer. Methods Eng., 30, 875, 10.1002/nme.1620300419

García-Ruíz, 1999, Fixed grid finite elements in elasticity problems, Eng. Comput., 16, 145, 10.1108/02644409910257430

Garcia, 2005, Fixed Grid Finite Element Analysis for 3D linear elastic structures, Int. J. Comput. Methods, 2, 569, 10.1142/S0219876205000582

Maan, 2007, Extension of the fixed grid Finite Element Method to eigenvalue problems, Adv. Eng. Softw., 38, 607, 10.1016/j.advengsoft.2006.08.026

O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, Elsevier Butterworth Heinemann, Oxford, 2013.

J. Shewchuk, An Introduction to the Conjugate Gradient Method Without the Agonizing Pain, Technical Report, Carnegie Mellon University, Pittsburgh, PA, USA, 1994.

Daydé, 1997, Element-by-element preconditioners for large partially separable optimization problems, SIAM J. Sci. Comput., 18, 1767, 10.1137/S1064827594274796

Bellavia, 2013, A matrix-free preconditioner for sparse symmetric positive definite systems and least-squares problems, SIAM J. Sci. Comput., 35, 192, 10.1137/110840819