Efficient, low-dimensional nanocomposite bilayer CuO/ZnO solar cell at various annealing temperatures
Tóm tắt
Từ khóa
Tài liệu tham khảo
Morton, O.: Solar energy: a new day dawning? Silicon Valley sunrise. Nature 443, 19–22 (2006). https://doi.org/10.1038/443019a
Green, M.A.: Silicon photovoltaic modules: a brief history of the first 50 years. Prog. Photovolt. Res. Appl. 13, 447–455 (2005). https://doi.org/10.1002/pip.612
Walzer, K., Maennig, B., Pfeiffer, M., Leo, K.: Highly efficient organic devices based on electrically doped transport layers. Chem. Rev. 107, 1233–1271 (2007). https://doi.org/10.1021/cr050156n
Aylett, B.J.: Transition Metal Oxides: Structure, Properties and Synthesis of Ceramic Oxides. In: Rao, C.N.R., Raveau, B. (eds.) Appl. Organomet. Chem., vol. 13, pp. 476–477, 2nd edn. Wiley–VCH, New York (1998). https://doi.org/10.1002/(sici)1099-0739(199906)13:6<476::aid-aoc851>3.0.co;2-n (xi + 373 pages. £80. ISBN 0-471-18971-5 (1999))
Guo, W., Xu, C., Wang, X., Wang, S., Pan, C., Lin, C., Wang, Z.L.: Rectangular bunched rutile TiO2 nanorod arrays grown on carbon fiber for dye-sensitized solar cells. J. Am. Chem. Soc. 134, 4437–4441 (2012). https://doi.org/10.1021/ja2120585
Lien, H.-T., Wong, D.P., Tsao, N.-H., Huang, C.-I., Su, C., Chen, K.-H., Chen, L.-C.: Effect of copper oxide oxidation state on the polymer-based solar cell buffer layers. ACS Appl. Mater. Interfaces 6, 22445–22450 (2014). https://doi.org/10.1021/am5064469
Mittiga, A., Salza, E., Sarto, F., Tucci, M., Vasanthi, R.: Heterojunction solar cell with 2% efficiency based on a Cu2O substrate. Appl. Phys. Lett. 88, 163502 (2006). https://doi.org/10.1063/1.2194315
Norton, D.P.: Synthesis and properties of epitaxial electronic oxide thin-film materials. Mater. Sci. Eng. R Rep. 43, 139–247 (2004). https://doi.org/10.1016/j.mser.2003.12.002
Park, S.-Y., Seo, H.O., Kim, K.-D., Shim, W.H., Heo, J., Cho, S., Kim, Y.D., Lee, K.H., Lim, D.C.: Organic solar cells fabricated by one-step deposition of a bulk heterojunction mixture and TiO2/NiO hole-collecting agents. J. Phys. Chem. C 116, 15348–15352 (2012). https://doi.org/10.1021/jp302351h
Chiang, M.J., Wu, C.W., Cheng, H.E.: Effect of Oxygen Flow Rate and Temperature on the Structure of DC Sputtered Nanocrystalline Copper Oxide Films. In: Advanced Materials Research, pp. 129–131 (2007)
Vinodkumar, R., Lethy, K.J., Beena, D., Detty, A.P., Navas, I., Nayar, U.V., Mahadevan Pillai, V.P., Ganesan, V., Reddy, V.R.: Effect of ITO buffer layers on the structural, optical and electrical properties of ZnO multilayer thin films prepared by pulsed laser deposition technique. Sol. Energy Mater. Sol. Cells 94, 68–74 (2010). https://doi.org/10.1016/j.solmat.2009.02.017
Lim, Y.-F., Choi, J.J., Hanrath, H.: Facile synthesis of colloidal CuO nanocrystals for light-harvesting applications. J. Nanomater. 2012(2012). https://doi.org/10.1155/2012/393160
Bao, Q., Li, C.M., Liao, L., Yang, H., Wang, W., Ke, C., Song, Q., Bao, H., Yu, T., Loh, K.P., Guo, J.: Electrical transport and photovoltaic effects of core-shell CuO/C60 nanowire heterostructure. Nanotechnology 20, 65203 (2009). https://doi.org/10.1088/0957-4484/20/6/065203
Gao, F., Liu, X.-J., Zhang, J.-S., Song, M.-Z., Li, N.: Photovoltaic properties of the p-CuO/n-Si heterojunction prepared through reactive magnetron sputtering. J. Appl. Phys. 111, 84507 (2012). https://doi.org/10.1063/1.4704382
Dimopoulos, T., Peić, A., Müllner, P., Neuschitzer, M., Resel, R., Abermann, S., Postl, M., List, E.J.W., Yakunin, S., Heiss, W., Brückl, H.: Photovoltaic properties of thin film heterojunctions with cupric oxide absorber. J. Renew. Sustain. Energy 5, 11205 (2013). https://doi.org/10.1063/1.4791779
Anandan, S., Wen, X., Yang, S.: Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells. Mater. Chem. Phys. 93, 35–40 (2005). https://doi.org/10.1016/j.matchemphys.2005.02.002
Sahay, R., Sundaramurthy, J., Suresh Kumar, P., Thavasi, V., Mhaisalkar, S.G., Ramakrishna, S.: Synthesis and characterization of CuO nanofibers, and investigation for its suitability as blocking layer in ZnO NPs based dye sensitized solar cell and as photocatalyst in organic dye degradation. J. Solid State Chem. 186, 261–267 (2012). https://doi.org/10.1016/j.jssc.2011.12.013
Ikram, M., Imran, M., Nunzi, J.M., Ali, S.: Efficient inverted hybrid solar cells using both CuO and P3HT as an electron donor materials. J. Mater. Sci. Mater. Electron. (2015). https://doi.org/10.1007/s10854-015-3239-1
Ikram, M., Murray, R., Nafees, M., Imran, M., Ali, S., Shah, S.I.: Efficient ternary blended hybrid organic solar cells: fullerene derivative replacement with metal oxide nanoparticles. Digest J. Nanomater. Biostruct. 9(3), 1271–1276 (2014)
Bu, I.Y.Y.: Novel all solution processed heterojunction using p-type cupric oxide and n-type zinc oxide nanowires for solar cell applications. Ceram. Int. 39, 8073–8078 (2013). https://doi.org/10.1016/j.ceramint.2013.03.079
Omayio, E.O., Karimi, P.M., Njoroge, W.K., Mugwanga, F.K.: Current-voltage characteristics of p-CuO/n-ZnO:Sn Solar cell. Int. J. Thin Film Sci. Tec. 2(1), 25–28 (2013)
Kidowaki, H., Oku, T., Akiyama, T.: Fabrication and characterization of CuO/ZnO solar cells. J. Phys. Conf. Ser. 352, 12022 (2012). https://doi.org/10.1088/1742-6596/352/1/012022
Shockley, W., Queisser, H.J.: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510 (1961). https://doi.org/10.1063/1.1736034
Fan, Z., Ruebusch, D.J., Rathore, A.A., Kapadia, R., Ergen, O., Leu, P.W., Javey, A.: Challenges and prospects of nanopillar-based solar cells. Nano Res. 2, 829–843 (2009). https://doi.org/10.1007/s12274-009-9091-y
Wang, P., Zhao, X., Li, B.: ZnO-coated CuO nanowire arrays: fabrications, optoelectronic properties, and photovoltaic applications. Opt. Express 19, 11271–11279 (2011)
Masudy-Panah, S., Dalapati, G.K., Radhakrishnan, K., Kumar, A., Tan, H.R., Naveen Kumar, E., Vijila, C., Tan, C.C., Chi, D.: p-CuO/n-Si heterojunction solar cells with high open circuit voltage and photocurrent through interfacial engineering. Prog. Photovolt. Res. Appl. 23, 637–645 (2015). https://doi.org/10.1002/pip.2483
Peic, A., Dimopoulos, T., Resel, R., Abermann, S., Postl, M., List, E.J.W., Brückl, H.: Effect of AZO substrates on self-seeded electrochemical growth of vertically aligned ZnO nanorod arrays and their optical properties. J. Nanomater. 2012, (2012). https://doi.org/10.1155/2012/457904
Alharbi, F., Bass, J.D., Salhi, A., Alyamani, A., Kim, H.-C., Miller, R.D.: Abundant non-toxic materials for thin film solar cells: alternative to conventional materials. Renew. Energy 36, 2753–2758 (2011). https://doi.org/10.1016/j.renene.2011.03.010