Efficient, low-dimensional nanocomposite bilayer CuO/ZnO solar cell at various annealing temperatures

Kashif Iqbal1, Muhammad Ikram1, Mohammad Atif Faiz Afzal2, Salamat Ali1
1Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore, 54000, Pakistan
2Pakistan Council of Renewable Energy Technology, PCRET, Islamabad, Pakistan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Morton, O.: Solar energy: a new day dawning? Silicon Valley sunrise. Nature 443, 19–22 (2006). https://doi.org/10.1038/443019a

Green, M.A.: Silicon photovoltaic modules: a brief history of the first 50 years. Prog. Photovolt. Res. Appl. 13, 447–455 (2005). https://doi.org/10.1002/pip.612

Walzer, K., Maennig, B., Pfeiffer, M., Leo, K.: Highly efficient organic devices based on electrically doped transport layers. Chem. Rev. 107, 1233–1271 (2007). https://doi.org/10.1021/cr050156n

Aylett, B.J.: Transition Metal Oxides: Structure, Properties and Synthesis of Ceramic Oxides. In: Rao, C.N.R., Raveau, B. (eds.) Appl. Organomet. Chem., vol. 13, pp. 476–477, 2nd edn. Wiley–VCH, New York (1998). https://doi.org/10.1002/(sici)1099-0739(199906)13:6<476::aid-aoc851>3.0.co;2-n (xi + 373 pages. £80. ISBN 0-471-18971-5 (1999))

Guo, W., Xu, C., Wang, X., Wang, S., Pan, C., Lin, C., Wang, Z.L.: Rectangular bunched rutile TiO2 nanorod arrays grown on carbon fiber for dye-sensitized solar cells. J. Am. Chem. Soc. 134, 4437–4441 (2012). https://doi.org/10.1021/ja2120585

Lien, H.-T., Wong, D.P., Tsao, N.-H., Huang, C.-I., Su, C., Chen, K.-H., Chen, L.-C.: Effect of copper oxide oxidation state on the polymer-based solar cell buffer layers. ACS Appl. Mater. Interfaces 6, 22445–22450 (2014). https://doi.org/10.1021/am5064469

Mittiga, A., Salza, E., Sarto, F., Tucci, M., Vasanthi, R.: Heterojunction solar cell with 2% efficiency based on a Cu2O substrate. Appl. Phys. Lett. 88, 163502 (2006). https://doi.org/10.1063/1.2194315

Norton, D.P.: Synthesis and properties of epitaxial electronic oxide thin-film materials. Mater. Sci. Eng. R Rep. 43, 139–247 (2004). https://doi.org/10.1016/j.mser.2003.12.002

Park, S.-Y., Seo, H.O., Kim, K.-D., Shim, W.H., Heo, J., Cho, S., Kim, Y.D., Lee, K.H., Lim, D.C.: Organic solar cells fabricated by one-step deposition of a bulk heterojunction mixture and TiO2/NiO hole-collecting agents. J. Phys. Chem. C 116, 15348–15352 (2012). https://doi.org/10.1021/jp302351h

Chiang, M.J., Wu, C.W., Cheng, H.E.: Effect of Oxygen Flow Rate and Temperature on the Structure of DC Sputtered Nanocrystalline Copper Oxide Films. In: Advanced Materials Research, pp. 129–131 (2007)

Vinodkumar, R., Lethy, K.J., Beena, D., Detty, A.P., Navas, I., Nayar, U.V., Mahadevan Pillai, V.P., Ganesan, V., Reddy, V.R.: Effect of ITO buffer layers on the structural, optical and electrical properties of ZnO multilayer thin films prepared by pulsed laser deposition technique. Sol. Energy Mater. Sol. Cells 94, 68–74 (2010). https://doi.org/10.1016/j.solmat.2009.02.017

Lim, Y.-F., Choi, J.J., Hanrath, H.: Facile synthesis of colloidal CuO nanocrystals for light-harvesting applications. J. Nanomater. 2012(2012). https://doi.org/10.1155/2012/393160

Bao, Q., Li, C.M., Liao, L., Yang, H., Wang, W., Ke, C., Song, Q., Bao, H., Yu, T., Loh, K.P., Guo, J.: Electrical transport and photovoltaic effects of core-shell CuO/C60 nanowire heterostructure. Nanotechnology 20, 65203 (2009). https://doi.org/10.1088/0957-4484/20/6/065203

Gao, F., Liu, X.-J., Zhang, J.-S., Song, M.-Z., Li, N.: Photovoltaic properties of the p-CuO/n-Si heterojunction prepared through reactive magnetron sputtering. J. Appl. Phys. 111, 84507 (2012). https://doi.org/10.1063/1.4704382

Dimopoulos, T., Peić, A., Müllner, P., Neuschitzer, M., Resel, R., Abermann, S., Postl, M., List, E.J.W., Yakunin, S., Heiss, W., Brückl, H.: Photovoltaic properties of thin film heterojunctions with cupric oxide absorber. J. Renew. Sustain. Energy 5, 11205 (2013). https://doi.org/10.1063/1.4791779

Anandan, S., Wen, X., Yang, S.: Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells. Mater. Chem. Phys. 93, 35–40 (2005). https://doi.org/10.1016/j.matchemphys.2005.02.002

Sahay, R., Sundaramurthy, J., Suresh Kumar, P., Thavasi, V., Mhaisalkar, S.G., Ramakrishna, S.: Synthesis and characterization of CuO nanofibers, and investigation for its suitability as blocking layer in ZnO NPs based dye sensitized solar cell and as photocatalyst in organic dye degradation. J. Solid State Chem. 186, 261–267 (2012). https://doi.org/10.1016/j.jssc.2011.12.013

Ikram, M., Imran, M., Nunzi, J.M., Ali, S.: Efficient inverted hybrid solar cells using both CuO and P3HT as an electron donor materials. J. Mater. Sci. Mater. Electron. (2015). https://doi.org/10.1007/s10854-015-3239-1

Ikram, M., Murray, R., Nafees, M., Imran, M., Ali, S., Shah, S.I.: Efficient ternary blended hybrid organic solar cells: fullerene derivative replacement with metal oxide nanoparticles. Digest J. Nanomater. Biostruct. 9(3), 1271–1276 (2014)

Bu, I.Y.Y.: Novel all solution processed heterojunction using p-type cupric oxide and n-type zinc oxide nanowires for solar cell applications. Ceram. Int. 39, 8073–8078 (2013). https://doi.org/10.1016/j.ceramint.2013.03.079

Omayio, E.O., Karimi, P.M., Njoroge, W.K., Mugwanga, F.K.: Current-voltage characteristics of p-CuO/n-ZnO:Sn Solar cell. Int. J. Thin Film Sci. Tec. 2(1), 25–28 (2013)

Kidowaki, H., Oku, T., Akiyama, T.: Fabrication and characterization of CuO/ZnO solar cells. J. Phys. Conf. Ser. 352, 12022 (2012). https://doi.org/10.1088/1742-6596/352/1/012022

Shockley, W., Queisser, H.J.: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510 (1961). https://doi.org/10.1063/1.1736034

Fan, Z., Ruebusch, D.J., Rathore, A.A., Kapadia, R., Ergen, O., Leu, P.W., Javey, A.: Challenges and prospects of nanopillar-based solar cells. Nano Res. 2, 829–843 (2009). https://doi.org/10.1007/s12274-009-9091-y

Wang, P., Zhao, X., Li, B.: ZnO-coated CuO nanowire arrays: fabrications, optoelectronic properties, and photovoltaic applications. Opt. Express 19, 11271–11279 (2011)

Masudy-Panah, S., Dalapati, G.K., Radhakrishnan, K., Kumar, A., Tan, H.R., Naveen Kumar, E., Vijila, C., Tan, C.C., Chi, D.: p-CuO/n-Si heterojunction solar cells with high open circuit voltage and photocurrent through interfacial engineering. Prog. Photovolt. Res. Appl. 23, 637–645 (2015). https://doi.org/10.1002/pip.2483

Peic, A., Dimopoulos, T., Resel, R., Abermann, S., Postl, M., List, E.J.W., Brückl, H.: Effect of AZO substrates on self-seeded electrochemical growth of vertically aligned ZnO nanorod arrays and their optical properties. J. Nanomater. 2012, (2012). https://doi.org/10.1155/2012/457904

Alharbi, F., Bass, J.D., Salhi, A., Alyamani, A., Kim, H.-C., Miller, R.D.: Abundant non-toxic materials for thin film solar cells: alternative to conventional materials. Renew. Energy 36, 2753–2758 (2011). https://doi.org/10.1016/j.renene.2011.03.010

Wanninayake, A.P., Gunashekar, S., Li, S., Church, B.C., Abu-Zahra, N.: Performance enhancement of polymer solar cells using copper oxide nanoparticles. Semicond. Sci. Technol. 30, 64004 (2015). https://doi.org/10.1088/0268-1242/30/6/064004