Efficient kNN Classification With Different Numbers of Nearest Neighbors

IEEE Transactions on Neural Networks and Learning Systems - Tập 29 Số 5 - Trang 1774-1785 - 2018
Shichao Zhang1, Xuelong Li2, Ming Zong1, Xiaofeng Zhu1, Ruili Wang3
1Guangxi Key Laboratory of MIMS, College of Computer Science and Information Technology, Guangxi Normal University, Guilin, China
2[State Key Laboratory of Transient Optics and Photonics, Center for OPTical IMagery Analysis and Learning, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, China]
3Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1109/TNNLS.2013.2253798

10.1109/TIP.2009.2023706

10.2174/1573409910666140410110241

li, 2003, An Improved K-Nearest Neighbor Algorithm for Text Categorization

10.1109/TIP.2014.2332764

zhang, 2014, Efficient kNN algorithm based on graph sparse reconstruction, Proc ADMA, 356

10.1016/j.jss.2011.12.019

10.1109/TNNLS.2016.2521602

10.1109/TGRS.2008.916090

10.1016/j.patcog.2012.07.018

10.1016/j.eswa.2008.05.019

10.1109/TSMCB.2005.845396

bahety, 2014, Extension and Evaluation of ID3—Decision Tree Algorithm, Entropy, 2, 1

zhou, 2012, Ensemble Methods Foundations and Algorithms, 10.1201/b12207

10.1145/2990508

10.1016/j.neucom.2015.08.112

10.1109/TNNLS.2015.2461552

tsuda, 2002, Clustering with the fisher score, Proc NIPS, 729

10.1016/j.neuroimage.2014.05.078

10.1109/TCSVT.2016.2539778

10.1109/TSMCB.2008.927276

10.1080/088395101750065732

10.1109/TNNLS.2013.2293418

10.1007/s10489-009-0207-6

cheng, 2014, $K$ NN algorithm with data-driven $k$ value, Proc ADMA, 499

10.1109/TNN.2009.2018547

10.1109/TKDE.2010.99

10.1109/TPAMI.2006.126

10.1145/2502081.2502107

zhu, 2007, Cost-sensitive imputing missing values with ordering, Proc AAAI, 1922

liu, 0, A novel locally linear KNN method with applications to visual recognition, IEEE Trans Neural Netw Learn Syst

guo, 2003, KNN model-based approach in classification, Move to Meaningful Internet System CoopIS DOA and ODBASE, 2888, 986, 10.1007/978-3-540-39964-3_62

10.1016/j.patrec.2007.05.018

10.1017/CBO9780511804441

he, 2004, Locality preserving projections, Proc Neural Inf Process Syst, 16, 153

he, 2005, Face recognition using Laplacianfaces, IEEE Trans Pattern Anal Mach Intell, 27, 328, 10.1109/TPAMI.2005.55

10.1145/2457465.2457469

li, 2010, L1-norm-based 2DPCA, IEEE Trans Syst Man Cybern B, 40, 1170, 10.1109/TSMCB.2009.2035629

10.1109/TNNLS.2015.2464316

zhu, 2014, Matrix-similarity based loss function and feature selection for Alzheimer’s disease diagnosis, Proc CVPR, 3089

10.1109/FSKD.2010.5569740

10.1007/s10115-007-0114-2

10.1109/TNNLS.2013.2262001

10.1109/TPAMI.2009.55

landgrebe, 1991, A survey of decision tree classifier methodology, IEEE Trans Syst Man Cybern, 21, 660, 10.1109/21.97458

10.1109/TCYB.2016.2519683

zhang, 2008, Parimputation: From imputation and null-imputation to partially imputation, IEEE Intell Inf Bull, 9, 32

góra, 2002, RIONA: A classifier combining rule induction and k-NN method with automated selection of optimal neighbourhood, Proc ECML, 111

10.1109/TSMCB.2007.908363

zhu, 2014, Multi-modality canonical feature selection for Alzheimer’s disease diagnosis, Proc MICCAI, 162

10.1016/j.patcog.2005.08.009

10.1029/95WR02966

yu, 2014, A unified learning framework for single image super-resolution, IEEE Trans Neural Netw Learn Syst, 25, 780, 10.1109/TNNLS.2013.2281313

10.1109/TPAMI.2006.134

10.1109/TSMCB.2009.2037923

10.1109/TNNLS.2014.2369426

10.1016/j.is.2011.10.009

10.1016/j.jss.2012.05.073

10.1109/CVPR.2013.209

10.1109/TCYB.2015.2403356

10.1007/s11432-015-5289-7

vincent, 2001, K-local hyperplane and convex distance nearest neighbor algorithms, Proc NIPS, 985

10.4304/jcp.6.5.833-840

10.1007/s10916-011-9815-x

10.1109/INDIN.2006.275767

10.1007/s10489-006-0032-0

song, 2007, IKNN: Informative K-nearest neighbor pattern classification, Knowledge Discovery in Databases, 248

zhu, 2014, A novel multi-relation regularization method for regression and classification in ad diagnosis, Proc MICCAI, 401