Efficient excited‐state intramolecular proton transfer in acridone derivatives—A case study of Paratrimerin C

Thi Lê Anh Nguyen1,2, Dinh Hieu Truong1,2, Thị Chinh Ngo1,2, Duy Quang Dao1,2
1Faculty of Natural Sciences, Duy Tan University, Da Nang, Vietnam
2Institute of Research and Development, Duy Tan University, Da Nang, Vietnam

Tóm tắt

Abstract

Paratrimerin C is a natural acridone antioxidant that is also potent as an anti‐UV agent. The photophysical process of Paratrimerin C, including the absorption and emission and the excited state intramolecular proton transfer (ESIPT) mechanism, is studied herein with time‐dependent density functional theory. The solvent effect on ESIPT is studied for polar (water) and non‐polar (benzene) solvents employing the Integral Equation Formalism Polarization Continuum Model and adding up to three explicit molecules of solvent. The normal and tautomer forms of the Paratrimerin C at the ground‐ and excited‐state structures are studied at the M06‐2X/6‐311++G(d,p) level of theory. The potential energy curves along the reaction coordinates indicate that the ESIPT is a barrier‐less reaction, and the variation of OdOa distance in the excited state shows significant molecular structure deformation along the proton transfer process following the normal‐to‐tautomerism pathway. The obtained results suggest using of acridone derivatives as efficient and tunable fluorescence molecules besides their biological activities.

Từ khóa


Tài liệu tham khảo

10.1021/acs.accounts.8b00172

10.1016/j.jphotochemrev.2014.09.005

10.1039/C2CP23144A

10.1002/adma.201102046

10.1021/jp401840z

10.1021/jp1048138

10.1021/acsami.8b14215

10.1021/acs.chemmater.6b04707

10.1039/C5CS00543D

10.1021/jp206815t

10.1021/ja2062693

10.1039/C7CC00700K

10.1038/s41570-018-0020-z

10.1021/acsomega.9b00934

10.1039/C7CP05002J

10.1021/ol7025763

10.1021/am505501d

10.1002/jcc.26162

10.1021/acs.jpcb.7b05123

10.1039/C5CP06767G

10.1021/jp5088306

10.1021/j100267a017

10.1021/j100230a008

10.1021/acs.jpca.8b01799

10.1039/b816589k

10.1021/ja00335a007

10.1016/j.chemphys.2022.111513

10.1016/0009-2614(93)90046-4

10.1246/bcsj.66.2492

10.1016/0584-8539(94)00123-S

10.1016/0584-8539(94)80096-0

10.1016/S1386-1425(98)00033-X

10.1016/j.jlumin.2020.117800

10.1021/acs.jpca.9b00879

10.1021/acs.jpca.7b03877

10.1016/j.molliq.2017.11.121

10.1002/qua.20714

10.1038/srep32152

10.1016/j.jphotochem.2021.113165

10.1021/acs.jpca.9b00813

10.1016/j.jlumin.2018.04.064

10.1002/jcc.20957

10.1021/acs.jpca.7b07869

10.1021/jp508355k

10.1016/j.jphotochem.2011.10.006

10.1016/j.jphotochem.2020.113122

10.1016/j.reactfunctpolym.2020.104486

10.1080/25740881.2021.1876883

10.1021/np0005762

10.1039/B612168N

10.1016/j.phytochem.2005.09.019

10.1016/j.phytol.2019.10.010

10.1248/cpb.54.292

10.1016/j.ejmech.2022.114527

10.1016/S1734-1140(11)70499-6

10.1016/j.bmc.2004.10.051

10.1039/b310691h

10.1016/j.ejmech.2003.12.001

10.1016/j.tetlet.2017.02.083

10.1039/D2TC02270B

10.1016/j.electacta.2021.138347

10.1039/C8TC00175H

10.1002/slct.201901570

10.1002/ejoc.202000871

10.1039/C5RA25115J

10.1039/C5CP03222A

10.1021/ol901584g

10.1021/acscentsci.7b00183

10.1021/acs.joc.8b02939

10.1002/poc.4075

10.3390/molecules26082115

10.1002/vjch.201900083

10.1021/j100163a023

10.1021/j100367a042

10.1021/j100312a036

10.1016/S1010-6030(02)00305-2

10.1016/S1010-6030(96)04576-5

10.1016/0301-0104(96)00026-2

10.1039/D0RA05802E

Frisch M. J., 2016, Gaussian 16 Revision A.03

10.1021/ct0502763

10.1039/c1cp22144b

10.1063/1.3359469

Lv J., 2019, J. Am. Chem. Soc., 66, 49

Brown R. D., 1950, Aust. J. Sci. Res. Ser. A: Phys. Sci., 3, 593

10.1021/ja047815i

10.1021/acs.jpca.1c04192

10.1021/acs.jpca.9b10340

10.1021/acs.jpca.9b06063

10.1016/j.jlumin.2011.04.046

10.1021/ar00114a003

10.1016/j.procs.2016.05.535

10.1016/j.jocs.2014.01.005

10.1007/s10723-006-9043-7

C.G. K.Milfeld S.Pamidighantam J.Giuliani inProc. 2005 Linux Clusters: The HPC Revolution2005.