Khả năng loại bỏ dibutyltin (DBT) hiệu quả bởi nấm vi mô Metarhizium robertsii dưới điều kiện thoát khí mạnh và bổ sung axit ascorbic

Springer Science and Business Media LLC - Tập 24 - Trang 12118-12127 - 2017
Paulina Siewiera1, Sylwia Różalska1, Przemysław Bernat1
1Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland

Tóm tắt

Dibutyltin (DBT) là một chất ô nhiễm môi trường có đặc tính gây độc cho miễn dịch, độc thần kinh, và pro-oxidant. Trong nghiên cứu này, một nỗ lực đã được thực hiện để tăng cường khả năng loại bỏ DBT bằng chủng Metarhizium robertsii. Chúng tôi đã quan sát thấy sự phát triển nấm tăng cường trong bể sinh học (pO2 ≥ 20%) so với văn hóa trong bình (μ max tăng từ 0.061 lên 0.086 h−1). Hơn nữa, dưới điều kiện thoát khí, sợi nấm M. robertsii với hình thái "như tóc" đã phân hủy DBT (20 mg l−1) nhanh gấp 10 lần trong bể sinh học so với trong văn hóa bình. Monobutyltin (MBT) và một dẫn xuất hydroxy hóa của MBT (OHBuSnH2) đã được phát hiện như là sản phẩm phụ của quá trình debutyl hóa dibutyltin. Việc sử dụng đồng thời glucose và butyltins cho thấy tính chất đồng chuyển hóa của việc loại bỏ monobutyltin và dibutyltin. Để bảo vệ tế bào nấm khỏi căng thẳng oxy hóa do sự hiện diện của DBT, vitamin C (20 mg l−1) đã được áp dụng. Việc bổ sung axit ascorbic (AA) đã dẫn đến sự tăng tốc gấp 3 lần trong việc loại bỏ MBT trong 7 giờ đầu của quá trình ủ. Bằng cách sử dụng kỹ thuật HPLC-MS/MS, một phân tích định lượng của malondialdehyde (MDA), một dấu hiệu của căng thẳng oxy hóa, đã được thực hiện. Trong sự hiện diện của AA, một sự giảm lượng MDA (khoảng 45%) đã được quan sát so với trường hợp tế bào nấm bị tiếp xúc với DBT một mình.

Từ khóa

#dibutyltin #Metarhizium robertsii #loại bỏ #căng thẳng oxy hóa #axit ascorbic

Tài liệu tham khảo

Albalat A, Potrykus J, Pempkowiak J, Porte C (2002) Assessment of organotin pollution along the Polish coast (Baltic Sea) by using mussels and fish as sentinel organisms. Chemosphere 47:165–171 Ayala A, Muñoz MF, Argüelles A (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med Cell Longev. doi:10.1155/2014/360438 Bernat P, Długoński J (2006) Acceleration of tributyltin chloride (TBT) degradation in liquid cultures of the filamentous fungus Cunninghamella elegans. Chemosphere 62(1):3–8 Bernat P, Długoński J (2009) Isolation of Streptomyces sp. strain capable of butyltin compounds degradation with high efficiency. J Hazard Mater 171:660–664 Bernat P, Szewczyk R, Krupiński M, Długoński J (2013) Butyltins degradation by Cunninghamella elegans and Cochliobolus lunatus co-culture. J Hazard Mater 246-247:277–282 Bernat P, Siewiera P, Soboń A, Długoński J (2014) Phospholipids and protein adaptation of Pseudomonas sp. to the xenoestrogen tributyltin chloride (TBT). World J Microbiol Biotechnol 30:2343–2350 Bilodeau K, Couet F, Boccafoschi F, Mantovani D (2005) Design of a perfusion bioreactor specific to the regeneration of vascular tissues under mechanical stresses. Artif Organs 29:906–912 Boswell CD, Nienow AW, Gill NK, Kocharunchitt S, Hewitt CJ (2003) The impact of fluid mechanical stress on Saccharomyces cerevisiae cells during continuous cultivation in an agitated, aerated bioreactor; its implication for mixing in the brewing process and aerobic fermentations. Food Bioprod Process 81:23–32 Bouchard N, Pelletier É, Fournier M (1999) Effects of butyltin compounds on phagocytic activity of hemocytes from three marine bivalves. Environ Toxicol Chem 18(3):519–522 Casas López JL, Sánchez Pérez JA, Fernández Sevilla JM, Rodríguez Porcel EM, Chisti Y (2005) Pellet morphology, culture rheology and lovastatin production in cultures of Aspergillus terreus. J Biotechnol 116(1):61–77 Chamsartra S, Hewitt CJ, Nienow AW (2005) The impact of fluid mechanical stress on Corynebacterium glutamicum during continuous cultivation in an agitated bioreactor. Biotechnol Lett 27:693–700 Chantong B, Kratschmar DV, Lister A, Odermatt A (2014) Dibutyltin promotes oxidative stress and increases inflammatory mediators in BV-2 microglia cells. Toxicol Lett 230(2):177–187 Chen CW, Chen CF, Ju YR, Dong CD (2016) Assessment of the bioaccumulation and biodegradation of butyltin compounds by Thalamita crenata in Kaohsiung Harbor, Taiwan. Int Biodeterior Biodegradation 113:97–104 Csallany AS, Guan MD, Manwaring JD, Addis PB (1984) Free malonaldehyde determination in tissues by high-performance liquid chromatography. Anal Biochem 142:277–283 El-Demerdash FM, Yousef MI, Zoheir MA (2005) Stannous chloride induces alterations in enzyme activities, lipid peroxidation and histopathology in male rabbit: antioxidant role of vitamin C. Food Chem Toxicol 43(12):1743–1752 Frouin H, Lebeuf M, Saint-Louis R, Hammill M, Pelletier E, Fournier M (2008) Toxic effects of tributyltin and its metabolites on harbour seal (Phocavitulina) immune cells in vitro. Aquat Toxicol 90(3):243–251 Garcia-Ochoa F, Gomez E (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv 27:153–176 Jenkins SM, Ehman K, Barone S Jr (2004) Structure–activity comparison of organotin species: dibutyltin is a developmental neurotoxicant in vitro and in vivo. Behav Brain Res 151:1–12 Lee JS, Little BJ (2015) Technical note: electrochemical and chemical complications resulting from yeast extract addition to stimulate microbial growth. Corrosion 71(12):1434–1440 Li Y, Schellhorn HE (2007) New developments and novel therapeutic perspectives for vitamin C. J Nutr 137(10):2171–2184 Lobos JH, Leib TK, Su TM (1992) Biodegradation of bisphenol A and other bisphenols by a gram-negative aerobic bacterium. Appl Environ Microbiol 58:1823–1831 Lu XL, Song YH, Fu YB, Si JM, Qian KD (2007) Ascorbic acid alleviates pancreatic damage induced by dibutyltin dichloride (DBTC) in rats. Yonsei Med J 48(6):1028–1034 Matsuda R, Suzuki T, Saito Y (1993) Metabolism of tri-n-butyltin chloride in male rats. J Agric Food Chem 41:489–495 Moscoso F, Teijiz I, Deive FJ, Sanromán MA (2012) Efficient PAHs biodegradation by a bacterial consortium at flask and bioreactor scale. Bioresour Technol 119:270–276 Moscoso F, Deive FJ, Longo MA, Sanromán MA (2015) Insights into polyaromatic hydrocarbon biodegradation by Pseudomonas stutzeri CECT 930: operation at bioreactor scale and metabolic pathways. Int J Environ Sci Technol 12:1243–1252 Moser VC, McGee JK, Ehman KD (2009) Concentration and persistence of tin in rat brain and blood following dibutyltin exposure during development. J Toxicol Environ Health A 72(1):47–52 Nemanič TM, Milačič R, Ščančar J (2009) A survey of organotin compounds in the Northern Adriatic Sea. Water Air Soil Pollut 196:211–224 Nesci S, Ventrella V, Trombetti F, Pirini M, Borgatti AR, Pagliarani A (2011) Tributyltin (TBT) and dibutyltin (DBT) differently inhibit the mitochondria Mg-ATPase activity in mussel digestive gland. Toxicol in Vitro 25:117–124 Nielsen JB, Strand J (2002) Butyltin compounds in human liver. Environ Res 88:129–133 Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22(3):189–259 Ponce BL, Latorre VK, González M, Seeger M (2011) Antioxidant compounds improved PCB-degradation by Burkholderia xenovorans strain LB400. Enzym Microb Technol 49(6–7):509–516 Różalska S, Glińska S, Długoński J (2014) Metarhizium robertsii morphological flexibility during nonylphenol removal. Int Biodeterior Biodegradation 95:285–293 Sakultantimetha A, Keenan HE, Beattie TK, Bangkedphol S, Cavoura O (2011) Bioremediation of tributyltin contaminated sediment: degradation enhancement and improvement of bioavailability to promote treatment processes. Chemosphere 83:680–686 Siewiera P, Bernat P, Różalska S, Długoński J (2015) Estradiol improves tributyltin degradation by the filamentous fungus Metarhizium robertsii. Int Biodeterior Biodegradation 104:258–263 Singh S, Nain L (2014) Microorganisms in the conversion of agricultural wastes to compost. Proc Indian Natn Sci Acad 80:473–481 Słaba M, Gajewska E, Bernat P, Fornalska M, Długoński J (2013) Adaptive alterations in the fatty acids composition under induced oxidative stress in heavy metal-tolerant filamentous fungus Paecilomyces marquandii cultured in ascorbic acid presence. Environ Sci Pollut R 20:3423–3434 Soboń A, Szewczyk R, Długoński J (2016) Tributyltin (TBT) biodegradation induces oxidative stress of Cunninghamella echinulata. Int Biodeterior Biodegradation 107:92–101 Sontag TJ, Parker RS (2002) Cytochrome P450 ω-hydroxylase pathway of tocopherol catabolism. Novel mechanism of regulation of vitamin E status. J Biol Chem 277(28):25290–25296 Suzuki T, Matsuda R, Saito Y (1992) Molecular species of tri-n-butyltin compounds in marine products. J Agric Food Chem 40(8):1437–1443 Tsang CK, Lau PS, Tam NFY, Wong YS (1999) Biodegradation capacity of tributyltin by two Chlorella species. Environ Pollut 105:289–297 Wei R, Li G, Seymour AB (2010) High-throughput and multiplexed LC/MS/MRM method for targeted metabolomics. Anal Chem 82:5527–5533 Whalen MM, Loganathan BG, Kannan K (1999) Immunotoxicity of environmentally relevant concentrations of butyltins on human natural killer cells in vitro. Environ Res 81:108–116 White JS, Tobin JM, Cooney JJ (1999) Organotin compounds and their interactions with microorganisms. Can J Microbiol 45:541–554 Yáñez J, Riffo P, Santander P, Mansilla HD, Mondaca MA, Campos V, Amarasiriwardena D (2015) Biodegradation of tributyltin (TBT) by extremophile bacteria from Atacama Desert and speciation of tin by-products. Bull Environ Contam Toxicol 95:126–130