Efficient approximations for numbers of survivors in the Lee–Carter model
Tài liệu tham khảo
Balakrishnan, 2012, Increasing directionally convex orderings of random vectors having the same copula, and their use in comparing ordered data, J. Multivariate Anal., 105, 45, 10.1016/j.jmva.2011.08.017
Denuit, 2008, Comonotonic approximations to quantiles of life annuity conditional expected present values, Insur. Math. Econ., 42, 831, 10.1016/j.insmatheco.2007.09.006
Denuit, 2007, Comonotonic bounds on the survival probabilities in the Lee–Carter model for mortality projections, Comput. Appl. Math., 203, 169, 10.1016/j.cam.2006.03.015
Denuit, 2005
Denuit, 2010, Comonotonic approximations to quantiles of life annuity conditional expected present values: extensions to general ARIMA models and comparison with the bootstrap, ASTIN Bull., 40, 331, 10.2143/AST.40.1.2049232
Denuit, M., Mesfioui, M., 2013 Multivariate higher-degree stochastic increasing convexity. ISBA Discussion Paper - 2013/16.
Dhaene, 2002, The concept of comonotonicity in actuarial science and finance: Theory, Insur. Math. Econ., 31, 3, 10.1016/S0167-6687(02)00134-8
Dhaene, 2002, The concept of comonotonicity in actuarial science and finance: Applications, Insur. Math. Econ., 31, 133, 10.1016/S0167-6687(02)00135-X
Dickson, 1999, Multi-period aggregate loss distributions for a life portfolio, ASTIN Bull., 29, 295, 10.2143/AST.29.2.504616
Donnelly, 2011, Quantifying mortality risk in small defined-benefit pension schemes, Scand. Actuar. J., 1
Hoedemakers, 2005, Approximations for life annuity contracts in a stochastic financial environment, Insur. Math. Econ., 37, 239, 10.1016/j.insmatheco.2005.02.003
Lee, 1992, Modelling and forecasting the time series of US mortality, J. Amer. Statist. Assoc., 87, 659
Sundt, 1999, Discussion on D.C.M Dickson and H.R. Waters, ASTIN Bull., 29, 311, 10.2143/AST.29.2.504617
Sundt, 2000, On error bounds for approximations to multivariate distributions, Insur. Math. Econ., 27, 137, 10.1016/S0167-6687(00)00042-1