Efficient and selective carbon dioxide reduction on low cost protected Cu2O photocathodes using a molecular catalyst

Energy and Environmental Science - Tập 8 Số 3 - Trang 855-861
Marcel Schreier1,2,3,4,5, Peng Gao1,2,3,4,5, Matthew T. Mayer1,2,3,4,5, Jingshan Luo1,2,3,4,5, Thomas Moehl1,2,3,4,5, Mohammad Khaja Nazeeruddin1,2,3,4,5, S. David Tilley1,2,3,4,5, Michaël Grätzel1,2,3,4,5
1CH-1015 Lausanne
2Institute of Chemical Sciences and Engineering
3Laboratory of Photonics and Interfaces
4Switzerland
5École Polytechnique Fédérale de Lausanne

Tóm tắt

A TiO2-protected Cu2O photocathode was paired with a molecular catalyst to drive the efficient and selective reduction of CO2 to CO.

Từ khóa


Tài liệu tham khảo

Intergovernmental Panel on Climate Change , in Climate Change 2013-The Physical Science Basis, Cambridge University Press, Cambridge, 2014, pp. 1–30

J. Olivier , G.Janssens-Maenhout, M.Muntean and J.Peters, Trends in global CO2 emissions: 2013 Report, PBL Netherlands Environmental Assessment Agency Institute for Environment and Sustainability (IES) of the European Commission's Joint Research Centre (JRC), The Hague, 2013

Boot-Handford, 2013, Energy Environ. Sci., 7, 130, 10.1039/C3EE42350F

N. S. Lewis and G.Crabtree, Basic Research Needs for Solar Energy Utilization: report of the Basic Energy Sciences Workshop on Solar Energy Utilization, US Department of Energy, Office of Basic Energy Science, Washington, DC, April 18–21, 2005

Joya, 2013, Angew. Chem., Int. Ed., 52, 10426, 10.1002/anie.201300136

Tachibana, 2012, Nat. Photonics, 6, 511, 10.1038/nphoton.2012.175

Nocera, 2012, Acc. Chem. Res., 45, 767, 10.1021/ar2003013

Kumar, 2012, Annu. Rev. Phys. Chem., 63, 541, 10.1146/annurev-physchem-032511-143759

Sivula, 2011, ChemSusChem, 4, 432, 10.1002/cssc.201000416

Paracchino, 2011, Nat. Mater., 10, 456, 10.1038/nmat3017

Tilley, 2014, Adv. Funct. Mater., 24, 303, 10.1002/adfm.201301106

Azevedo, 2014, Energy Environ. Sci., 7, 4044, 10.1039/C4EE02160F

Paracchino, 2012, Energy Environ. Sci., 5, 8673, 10.1039/c2ee22063f

Seger, 2013, RSC Adv., 3, 25902, 10.1039/c3ra45966g

Seger, 2013, J. Mater. Chem. A, 1, 15089, 10.1039/c3ta12309j

Seger, 2014, Energy Environ. Sci., 7, 2397, 10.1039/C4EE01335B

Seger, 2013, J. Am. Chem. Soc., 135, 1057, 10.1021/ja309523t

Hu, 2014, Science, 344, 1005, 10.1126/science.1251428

Lichterman, 2014, Energy Environ. Sci., 7, 3334, 10.1039/C4EE01914H

Liu, 2014, Energy Environ. Sci., 7, 2504, 10.1039/C4EE00450G

Smieja, 2012, Proc. Natl. Acad. Sci. U. S. A., 109, 15646, 10.1073/pnas.1119863109

Kumar, 2010, J. Phys. Chem. C, 114, 14220, 10.1021/jp105171b

Barton, 2008, J. Am. Chem. Soc., 130, 6342, 10.1021/ja0776327

Liu, 2013, Angew. Chem., Int. Ed., 52, 4225, 10.1002/anie.201210228

Smieja, 2010, Inorg. Chem., 49, 9283, 10.1021/ic1008363

Costentin, 2012, Science, 338, 90, 10.1126/science.1224581

Grills, 2014, J. Phys. Chem. Lett., 5, 2033, 10.1021/jz500759x

Keith, 2013, J. Am. Chem. Soc., 135, 15823, 10.1021/ja406456g

M. X. Tan , P. E.Laibinis, S. T.Nguyen, J. M.Kesselman, C. E.Stanton and N. S.Lewis, in Progress in Inorganic Chemistry, ed. K. D. Karlin, John Wiley & Sons, Inc., 1994, pp. 21–144

Frank, 1975, J. Am. Chem. Soc., 97, 7427, 10.1021/ja00859a007

Nozik, 1996, J. Phys. Chem., 100, 13061, 10.1021/jp953720e

Lam, 1976, J. Am. Chem. Soc., 98, 1156, 10.1021/ja00421a017

K. A. Grice and C. P.Kubiak, in Advances in Inorganic Chemistry, ed. M. Aresta and R. van Eldik, Academic Press, 2014, vol. 66, pp. 163–188

Sampson, 2013, Energy Environ. Sci., 6, 3748, 10.1039/c3ee42186d