Efficient and robust persistent homology for measures
Tài liệu tham khảo
Carlsson, 2009, Topology and data, Bull. Am. Math. Soc., 46, 255, 10.1090/S0273-0979-09-01249-X
Chazal, 2009, Proximity of persistence modules and their diagrams, 237
Chazal, 2009, Gromov–Hausdorff stable signatures for shapes using persistence, vol. 28, 1393
Chazal, 2009, A sampling theory for compact sets in Euclidean space, Discrete Comput. Geom., 41, 461, 10.1007/s00454-009-9144-8
Chazal, 2011, Geometric inference for probability measures, Found. Comput. Math., 11, 733, 10.1007/s10208-011-9098-0
Chazal
Chazal
Chazal, 2008, Towards persistence-based reconstruction in Euclidean spaces, 232
Clarkson, 1989, Applications of random sampling in computational geometry, II, Discrete Comput. Geom., 4, 387, 10.1007/BF02187740
Cohen-Steiner, 2007, Stability of persistence diagrams, Discrete Comput. Geom., 37, 103, 10.1007/s00454-006-1276-5
Da, 2013, 3D alpha shapes
Dey
Edelsbrunner, 2010
Edelsbrunner, 2000, Topological persistence and simplification, 454
Guibas, 2013, Witnessed k-distance, Discrete Comput. Geom., 49, 22, 10.1007/s00454-012-9465-x
Hatcher, 2002
Mount, 1998
Munkres, 1984
Niyogi, 2008, Finding the homology of submanifolds with high confidence from random samples, Discrete Comput. Geom., 39, 419, 10.1007/s00454-008-9053-2
Oudot, 2013, Zigzag zoology: Rips zigzags for homology inference, 387
Sheehy, 2013, Linear-size approximations to the Vietoris–Rips filtration, Discrete Comput. Geom., 49, 778, 10.1007/s00454-013-9513-1
Villani, 2003
Zomorodian, 2005, Computing persistent homology, Discrete Comput. Geom., 33, 249, 10.1007/s00454-004-1146-y