Efficient algorithms for computing Reeb graphs
Tài liệu tham khảo
Auber, 2003, Tulip: A huge graph visualisation framework, 105
C.L. Bajaj, V. Pascucci, D.R. Schikore, The contour spectrum, in: Proc. IEEE Conf. Visualization, 1997, pp. 167–173
Banchoff, 1970, Critical points and curvature for embedded polyhedral surfaces, Am. Math. Monthly, 77, 475, 10.2307/2317380
Bent, 1985, Biased search trees, SIAM J. Comput., 14, 545, 10.1137/0214041
Carr, 2003, Computing contour trees in all dimensions, Comput. Geom. Theory Appl., 24, 75, 10.1016/S0925-7721(02)00093-7
H. Carr, J. Snoeyink, M. van de Panne, Simplifying flexible isosurfaces using local geometric measures, in: Proc. IEEE Conf. Visualization, 2004, pp. 497–504
Cole-McLaughlin, 2004, Loops in Reeb graphs of 2-manifolds, Discrete Comput. Geom., 32, 231, 10.1007/s00454-004-1122-6
Cormen, 2001
H. Edelsbrunner, J. Harer, V. Natarajan, V. Pascucci, Morse–Smale complexes for piecewise linear 3-manifolds, in: Proc. 19th Annual Symposium on Computational Geometry, 2003, pp. 361–370
D. Eppstein, Dynamic generators of topologically embedded graphs, in: SODA '03: Proc. Fourteenth Annual ACM–SIAM Symposium on Discrete Algorithms, 2003, pp. 599–608
Eppstein, 1992, Maintenance of a minimum spanning forest in a dynamic plane graph, J. Algorithms, 13, 33, 10.1016/0196-6774(92)90004-V
I. Guskov, Z. Wood, Topological noise removal, in: Proc. Graphics Interface, 2001, pp. 19–26
Hétroy, 2003, Topological quadrangulations of closed triangulated surfaces using the Reeb graph, Graph. Models, 65, 131, 10.1016/S1524-0703(03)00005-5
M. Hilaga, Y. Shinagawa, T. Kohmura, T.L. Kunii, Topology matching for fully automatic similarity estimation of 3d shapes, in: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, 2001, pp. 203–212
Holm, 2001, Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity, J. ACM, 48, 723, 10.1145/502090.502095
E.P. Mücke, Shapes and implementations in three-dimensional geometry, PhD thesis, Dept. Computer Science, University of Illinois, Urbana-Champaign, Illinois, 1993
Pascucci, 2003, Parallel computation of the topology of level sets, Algorithmica, 38, 249, 10.1007/s00453-003-1052-3
Pascucci, 2007, Robust on-line computation of reeb graphs: simplicity and speed, ACM Trans. Graph., 26, 58, 10.1145/1276377.1276449
Reeb, 1946, Sur les points singuliers d'une forme de Pfaff complètement intégrable ou d'une fonction numérique, C. R. Acad. Sci. Paris, 222, 847
Shinagawa, 1991, Constructing a Reeb graph automatically from cross sections, IEEE Comput. Graph. Appl., 11, 44, 10.1109/38.103393
Shinagawa, 1991, Surface coding based on Morse theory, IEEE Comput. Graph. Appl., 11, 66, 10.1109/38.90568
Sleator, 1983, A data structure for dynamic trees, J. Comput. Syst. Sci., 26, 362, 10.1016/0022-0000(83)90006-5
M. Thorup, Near-optimal fully-dynamic graph connectivity, in: STOC '00: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, 2000, pp. 343–350
T. Tung, F. Schmitt, Augmented Reeb graphs for content-based retrieval of 3d mesh models, in: SMI '04: Proceedings of the Shape Modeling International 2004 (SMI'04), 2004, pp. 157–166
M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, D.R. Schikore, Contour trees and small seed sets for isosurface traversal, in: Proceedings of the 13th ACM Annual Symposium on Computational Geometry, 1997, pp. 212–220
Weber, 2007, Topology-controlled volume rendering, IEEE Trans. Vis. Comput. Graph., 13, 330, 10.1109/TVCG.2007.47
Wood, 2004, Removing excess topology from isosurfaces, ACM Trans. Graph., 23, 190, 10.1145/990002.990007
Shinagawa, 1995, Modeling contact of two complex objects: With an application to characterizing dental articulations, Computers and Graphics, 19, 21, 10.1016/0097-8493(94)00118-I
Zhang, 2005, Feature-based surface parameterization and texture mapping, ACM Trans. Graph., 24, 1, 10.1145/1037957.1037958