Efficient Photoelectrochemical Water Splitting by Tailoring MoS2/CoTe Heterojunction in a Photoelectrochemical Cell
Tóm tắt
Từ khóa
Tài liệu tham khảo
Pan, 2018, Boosting Charge Separation and Transfer by Plasmon-Enhanced MoS2/BiVO4 p-n Heterojunction Composite for Efficient Photoelectrochemical Water Splitting, ACS Sustain. Chem. Eng., 6, 6378, 10.1021/acssuschemeng.8b00170
Kumar, 2020, Enhanced photoelectrochemical performance of NaNbO3 nanofiber photoanodes coupled with visible light active g-C3N4 nanosheets for water splitting, Nanotechnology, 31, 135402, 10.1088/1361-6528/ab59a1
Andreiadis, 2011, Artificial photosynthesis: From molecular catalysts for light-driven water splitting to photoelectrochemical cells, Photochem. Photobiol., 87, 946, 10.1111/j.1751-1097.2011.00966.x
Shi, 2015, General Characterization Methods for Photoelectrochemical Cells for Solar Water Splitting, ChemSusChem, 8, 3192, 10.1002/cssc.201500075
Osterloh, 2013, Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting, Chem. Soc. Rev., 42, 2294, 10.1039/C2CS35266D
Murphy, 2006, Efficiency of solar water splitting using semiconductor electrodes, Int. J. Hydrogen Energy, 31, 1999, 10.1016/j.ijhydene.2006.01.014
Liao, 2014, Design of High-Efficiency Visible-Light Photocatalysts for Water Splitting: MoS2/AlN(GaN) Heterostructures, J. Phys. Chem. C, 118, 17594, 10.1021/jp5038014
Li, 2018, Distinct Optoelectronic Signatures for Charge Transfer and Energy Transfer in Quantum Dot-MoS2 Hybrid Photodetectors Revealed by Photocurrent Imaging Microscopy, Adv. Funct. Mater., 28, 1707558, 10.1002/adfm.201707558
Kang, 2015, Electronic structure engineering of Cu2O film/ZnO nanorods array all-oxide p-n heterostructure for enhanced photoelectrochemical property and self-powered biosensing application, Sci. Rep., 5, 7882, 10.1038/srep07882
Liu, 2013, MoS2/CdS Heterojunction with High Photoelectrochemical Activity for H2Evolution under Visible Light: The Role of MoS2, J. Phys. Chem. C, 117, 12949, 10.1021/jp4009652
Koo, 2018, Vertical-tunneling field-effect transistor based on MoTe2/MoS2 2D–2D heterojunction, J. Phys. D Appl. Phys., 51, 475101, 10.1088/1361-6463/aae2a7
Nardi, 2018, Versatile and Scalable Strategy To Grow Sol-Gel Derived 2H-MoS2 Thin Films with Superior Electronic Properties: A Memristive Case, ACS Appl. Mater. Interfaces, 10, 34392, 10.1021/acsami.8b12596
Wang, 2018, Friction and wear properties of MoS2-based coatings sliding against Cu and Al under electric current, Tribol. Int., 127, 379, 10.1016/j.triboint.2018.06.028
Sinha, 2018, MoS2 nanostructures for electrochemical sensing of multidisciplinary targets: A review, TrAC Trends Anal. Chem., 102, 75, 10.1016/j.trac.2018.01.008
Verdier, 2018, Microstructure and Thermoelectric Properties of Hot Extruded Sb-Doped Mg2Si Using MoS2 Nano-particles as Lubricant, J. Electron. Mater., 47, 6833, 10.1007/s11664-018-6596-8
Jian, 2017, Arrays of ZnO/MoS2 nanocables and MoS2 nanotubes with phase engineering for bifunctional photoelectrochemical and electrochemical water splitting, Chem. Eng. J., 328, 474, 10.1016/j.cej.2017.07.056
Velicky, 2016, Photoelectrochemistry of Pristine Mono- and Few-Layer MoS2, Nano Lett., 16, 2023, 10.1021/acs.nanolett.5b05317
Ge, 2013, Synthesis and characterization of composite visible light active photocatalysts MoS2–g-C3N4 with enhanced hydrogen evolution activity, Int. J. Hydrogen Energy, 38, 6960, 10.1016/j.ijhydene.2013.04.006
Lu, 2016, Controllable synthesis of graphitic C3N4/ultrathin MoS2 nanosheet hybrid nanostructures with enhanced photocatalytic performance, Dalton Trans., 45, 15406, 10.1039/C6DT02247B
Yuan, 2018, Near-infrared-driven Cr(vi) reduction in aqueous solution based on a MoS2/Sb2S3 photocatalyst, Catal. Sci. Technol., 8, 1545, 10.1039/C7CY02531A
Pradhan, 2018, Anomalous Raman and photoluminescence blue shift in mono- and a few layered pulsed laser deposited MoS2 thin films, Mater. Res. Bull., 102, 406, 10.1016/j.materresbull.2018.03.001
Chen, 2018, Controllable epitaxial growth of MoSe2-MoS2 lateral heterostructures with tunable electrostatic properties, Nanotechnology, 29, 484003, 10.1088/1361-6528/aae0cf
Zhang, 2015, Synthesis and sensor applications of MoS2-based nanocomposites, Nanoscale, 7, 18364, 10.1039/C5NR06121K
Sharma, 2018, Excellent room temperature ammonia gas sensing properties of n-MoS2/p-CuO heterojunction nanoworms, Sens. Actuators B Chem., 275, 499, 10.1016/j.snb.2018.08.046
Zhang, 2018, Enhanced humidity sensing properties of SmFeO3-modified MoS2 nanocomposites based on the synergistic effect, Sens. Actuators B Chem., 272, 459, 10.1016/j.snb.2018.06.007
Lee, 2018, 2D WSe2/MoS2 van der Waals heterojunction photodiode for visible-near infrared broadband detection, Appl. Phys. Lett., 113, 163102, 10.1063/1.5042440
Hossain, 2018, Electrochemical deposition of bulk MoS2 thin films for photovoltaic applications, Solar Energy Mater. Solar Cells, 186, 165, 10.1016/j.solmat.2018.06.026
Zhang, 2018, Strain tuned InSe/MoS2 bilayer van der Waals heterostructures for photovoltaics or photocatalysis, Phys. Chem. Chem. Phys., 20, 17574, 10.1039/C8CP02997K
Yin, 2014, Au nanoparticle-modified MoS2 nanosheet-based photoelectrochemical cells for water splitting, Small, 10, 3537, 10.1002/smll.201400124
Chakrabarty, 2018, RGO-MoS2 Supported NiCo2O4 Catalyst toward Solar Water Splitting and Dye Degradation, ACS Sustain. Chem. Eng., 6, 5238, 10.1021/acssuschemeng.7b04757
Ghosh, 2020, Modified p-GaN Microwells with Vertically Aligned 2D-MoS2 for Enhanced Photoelectrochemical Water Splitting, ACS Appl. Mater. Interfaces, 12, 13797, 10.1021/acsami.9b20969
Sheng, 2019, Phase controlled synthesis and the phase dependent photo-and electrocatalysis of CdS@CoMo2S4/MoS2 catalyst for HER, Int. J. Hydrogen Energy, 44, 19890, 10.1016/j.ijhydene.2019.05.194
Chen, 2019, MnS coupled with ultrathin MoS2 nanolayers as heterojunction photocatalyst for high photocatalytic and photoelectrochemical activities, J. Alloys Compd., 771, 364, 10.1016/j.jallcom.2018.08.319
Lu, 2015, The CoTe2 nanostructure: An efficient and robust catalyst for hydrogen evolution, Chem. Commun., 51, 17012, 10.1039/C5CC06806A
Khan, 2014, Controlled synthesis of cobalt telluride superstructures for the visible light photo-conversion of carbon dioxide into methane, Appl. Catal. A Gen., 487, 202, 10.1016/j.apcata.2014.09.016
Bazri, 2017, A heteroelectrode structure for solar water splitting: Integrated cobalt ditelluride across a TiO2-passivated silicon microwire array, Catal. Sci. Technol., 7, 1488, 10.1039/C6CY02688E
Aguilera, 2013, Electrochemical metallation with Ni(II) and Al(III) of 5,10,15,20-tetrakis(p-hydroxyphenyl)porphyrin: Effect of ultrasound, Electrochim. Acta, 98, 82, 10.1016/j.electacta.2013.03.028
Wang, 2018, Fabrication of MoS2@g-C3N4 core-shell nanospheres for visible light photocatalytic degradation of toluene, J. Nanopart Res., 20, 243, 10.1007/s11051-018-4340-1
Zhang, 2018, Photocatalytic activity of 3D flower-like MoS2 hemispheres, Mater. Res. Bull., 100, 249, 10.1016/j.materresbull.2017.12.036
Vangelista, 2016, Towards a uniform and large-scale deposition of MoS2 nanosheets via sulfurization of ultra-thin Mo-based solid films, Nanotechnology, 27, 175703, 10.1088/0957-4484/27/17/175703
Wang, 2015, One-step hydrothermal synthesis of flowerlike MoS2/CdS heterostructures for enhanced visible-light photocatalytic activities, RSC Adv., 5, 15621, 10.1039/C4RA15632C
Newbury, 2015, Performing elemental microanalysis with high accuracy and high precision by scanning electron microscopy/silicon drift detector energy-dispersive X-ray spectrometry (SEM/SDD-EDS), J. Mater. Sci., 50, 493, 10.1007/s10853-014-8685-2
Cao, 2017, Synthesis of 3D porous MoS2/g-C3N4 heterojunction as a high efficiency photocatalyst for boosting H2 evolution activity, RSC Adv., 7, 40727, 10.1039/C7RA06774G
Shi, 2018, MoS2 quantum dots embedded in g-C3N4 frameworks: A hybrid 0D-2D heterojunction as an efficient visible-light driven photocatalyst, Appl. Surf. Sci., 457, 30, 10.1016/j.apsusc.2018.06.132
Ji, 2014, Partially nitrided molybdenum trioxide with promoted performance as an anode material for lithium-ion batteries, J. Mater. Chem. A, 2, 699, 10.1039/C3TA13708B
Manikandan, 2020, Hydrothermal synthesis of cobalt telluride nanorods for a high performance hybrid asymmetric supercapacitor, RSC Adv., 10, 13632, 10.1039/C9RA08692G
Ehsan, 2019, ZnTe/ZnSe heterostructures: In-situ synthesis, characterization and photocatalytic activity for Congo Red degradation, SN Appl. Sci., 1, 197, 10.1007/s42452-019-0220-2
Wu, 2017, Cathodic shift of onset potential for water oxidation of WO3 photoanode by Zr+ ions implantation, J. Appl. Phys., 121, 085305, 10.1063/1.4976811
Bai, 2018, An Integrating Photoanode of WO3/Fe2O3 Heterojunction Decorated with NiFe-LDH to Improve PEC Water Splitting Efficiency, ACS Sustain. Chem. Eng., 6, 12906, 10.1021/acssuschemeng.8b02267
Theerthagiri, 2017, Recent advances in MoS2 nanostructured materials for energy and environmental applications—A review, J. Solid State Chem., 252, 43, 10.1016/j.jssc.2017.04.041
Sharma, 2020, Sensitization of vertically grown ZnO 2D thin sheets by MoSx for efficient charge separation process towards photoelectrochemical water splitting reaction, Int. J. Hydrogen Energy, 45, 12272, 10.1016/j.ijhydene.2020.02.190
Kumar, 2019, NaNbO3/MoS2 and NaNbO3/BiVO4 Core−Shell Nanostructures for Photoelectrochemical Hydrogen Generation, ACS Appl. Nano Mater., 2, 2651, 10.1021/acsanm.9b00098
Jiang, 2019, Construction of In2Se3/MoS2 heterojunction as photoanode toward efficient photoelectrochemical water splitting, Chem. Eng. J., 358, 752, 10.1016/j.cej.2018.10.088
Nan, 2018, Enhanced photoelectrochemical water splitting of BiVO4 photonic crystal photoanode by decorating with MoS2 nanosheets, Appl. Phys. Lett., 112, 173902, 10.1063/1.5025737
Yang, 2009, Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting, Nano Lett., 9, 2331, 10.1021/nl900772q
Jiang, 2010, Nanostructures of Metal Tellurides (PbTe, CdTe, CoTe2, Bi2Te3, and Cu7Te4) with Various Morphologies: A General Solvothermal Synthesis and Optical Properties, Eur. J. Inorg. Chem., 2010, 3005, 10.1002/ejic.201000251
Liu, 2015, Black Ni-doped TiO2 photoanodes for high-efficiency photoelectrochemical water-splitting, Int. J. Hydrogen Energy, 40, 2107, 10.1016/j.ijhydene.2014.12.064
Xu, 2017, Interface Band Engineering Charge Transfer for 3D MoS2 Photoanode to Boost Photoelectrochemical Water Splitting, ACS Sustain. Chem. Eng., 5, 3829, 10.1021/acssuschemeng.6b02883
Hou, 2013, A three-dimensional branched cobalt-doped alpha-Fe2O3 nanorod/MgFe2O4 heterojunction array as a flexible photoanode for efficient photoelectrochemical water oxidation, Angew. Chem., 52, 1248, 10.1002/anie.201207578
Zhou, 2014, Photoelectrodes based upon Mo:BiVO4 inverse opals for photoelectrochemical water splitting, ACS Nano, 8, 7088, 10.1021/nn501996a