Efficient Nonsacrificial Water Splitting through Two-Step Photoexcitation by Visible Light using a Modified Oxynitride as a Hydrogen Evolution Photocatalyst

Journal of the American Chemical Society - Tập 132 Số 16 - Trang 5858-5868 - 2010
Kazuhiko Maeda1, Masanobu Higashi1, Daling Lu1, Ryu Abe1, Kazunari Domen1
1Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan, Catalysis Research Center, Hokkaido University, Sapporo 001-0021, Japan, and Center for Advanced Materials Analysis, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bard A. J., 1995, Acc. Chem. Res., 28, 141, 10.1021/ar00051a007

Lee J. S., 2005, Catal. Surv. Asia, 9, 217, 10.1007/s10563-005-9157-0

Maeda K., 2007, J. Phys. Chem. C, 111, 7851, 10.1021/jp070911w

Osterloh F. E., 2008, Chem. Mater., 20, 35, 10.1021/cm7024203

Kudo A., 2009, Chem. Soc. Rev., 38, 253, 10.1039/B800489G

Ikeda S., 1998, J. Mater. Res., 13, 852, 10.1557/JMR.1998.0113

Kim H. G., 1999, Chem. Commun., 1077, 10.1039/a902892g

Kato H., 2003, J. Am. Chem. Soc., 125, 3082, 10.1021/ja027751g

Miseki Y., 2009, Energy Environ. Sci., 2, 306, 10.1039/b818922f

Scaife D. E., 1980, Solar Energy, 25, 41, 10.1016/0038-092X(80)90405-3

Abe R., 2000, J. Photochem. Photobiol. A: Chem., 137, 63, 10.1016/S1010-6030(00)00351-8

Bae E., 2006, J. Phys. Chem. B, 110, 14792, 10.1021/jp062540+

Li Q., 2007, J. Phys. Chem. C, 111, 8237, 10.1021/jp068703b

Li Q., 2007, J. Phys. Chem. C, 111, 11494, 10.1021/jp072520n

Maeda K., 2009, J. Phys. Chem. C, 113, 7962, 10.1021/jp900842e

Tsuji I., 2004, J. Am. Chem. Soc., 126, 13406, 10.1021/ja048296m

Tsuji I., 2005, Angew. Chem., Int. Ed., 44, 3565, 10.1002/anie.200500314

Bao N., 2008, Chem. Mater., 20, 110, 10.1021/cm7029344

Yan H., 2009, J. Catal., 266, 165, 10.1016/j.jcat.2009.06.024

Hara M., 2000, Chem. Commun., 1903, 10.1039/b003246h

Hara M., 2000, J. Phys. Chem. A, 104, 5275, 10.1021/jp000321x

Jiao F., 2009, Angew. Chem., Int. Ed., 48, 1841, 10.1002/anie.200805534

Silva C. G., 2009, J. Am. Chem. Soc., 131, 13833, 10.1021/ja905467v

Hitoki G., 2002, Chem. Commun., 1698, 10.1039/B202393H

Hitoki G., 2002, Chem. Lett., 31, 736, 10.1246/cl.2002.736

Kim H. G., 2004, J. Am. Chem. Soc., 126, 8912, 10.1021/ja049676a

Kim H. G., 2005, Angew. Chem., Int. Ed., 44, 4585, 10.1002/anie.200500064

Wang X., 2009, Nat. Mater., 8, 76, 10.1038/nmat2317

Wang X., 2009, J. Am. Chem. Soc., 131, 1680, 10.1021/ja809307s

Maeda K., 2009, J. Phys. Chem. C, 113, 4940, 10.1021/jp809119m

Maeda K., 2005, J. Am. Chem. Soc., 127, 8286, 10.1021/ja0518777

Teramura K., 2005, J. Phys. Chem. B, 109, 21915, 10.1021/jp054313y

Maeda K., 2006, Nature, 440, 295, 10.1038/440295a

Maeda K., 2008, J. Catal., 254, 198, 10.1016/j.jcat.2007.12.009

Hisatomi T., 2009, J. Phys. Chem. C, 113, 21458, 10.1021/jp9079662

Lee Y., 2007, J. Phys. Chem. C, 111, 1042, 10.1021/jp0656532

Lee Y., 2007, Chem. Mater., 19, 2120, 10.1021/cm062980d

Takanabe K., 2009, Dalton Trans., 10055, 10.1039/b910318j

Abe R., 2005, J. Phys. Chem. B, 109, 16052, 10.1021/jp052848l

Kato H., 2004, Chem. Lett., 33, 1348, 10.1246/cl.2004.1348

Sasaki Y., 2009, J. Phys. Chem. C, 113, 17536, 10.1021/jp907128k

Bard A. J., 1979, J. Photochem., 10, 59, 10.1016/0047-2670(79)80037-4

Tennakone K., 1986, J. Chem. Soc., Faraday Trans. 2, 82, 1475, 10.1039/f29868201475

Sayama K., 1997, Chem. Phys. Lett., 277, 387, 10.1016/S0009-2614(97)00903-2

Bamwenda G. R., 1999, J. Photochem. Photobiol. A: Chem., 122, 175, 10.1016/S1010-6030(99)00026-X

Fujihara K., 1998, J. Chem. Soc., Faraday Trans., 94, 3705, 10.1039/a806398b

Abe R., 2001, Chem. Phys. Lett., 344, 339, 10.1016/S0009-2614(01)00790-4

Sayama K., 2006, Catal. Commun., 7, 96, 10.1016/j.catcom.2005.09.008

Sayama K., 2001, Chem. Commun., 2416, 10.1039/b107673f

Sayama K., 2002, J. Photochem. Photobiol. A: Chem., 148, 71, 10.1016/S1010-6030(02)00070-9

Kato H., 2007, Bull. Chem. Soc. Jpn., 80, 2457, 10.1246/bcsj.80.2457

Abe R., 2005, Chem. Commun., 3829, 10.1039/b505646b

Higashi M., 2008, Chem. Phys. Lett., 452, 120, 10.1016/j.cplett.2007.12.021

Higashi M., 2009, Chem. Mater., 21, 1543, 10.1021/cm803145n

Higashi M., 2008, Chem. Lett., 37, 138, 10.1246/cl.2008.138

Sasaki Y., 2008, J. Catal., 259, 133, 10.1016/j.jcat.2008.07.017

Wang X., 2009, Chem. Commun., 3452, 10.1039/b904668b

Maeda K., 2008, Bull. Chem. Soc. Jpn., 81, 927, 10.1246/bcsj.81.927

Iwase, A., Kato, H., and Kudo, A.Abstract of the Catalysis Society of Japan Fall Meeting,Toyama, Japan, September 26, 2006; p 27.

Kraeutler B., 1978, J. Am. Chem. Soc., 100, 4317, 10.1021/ja00481a059

Kamat P. V., 2002, J. Phys. Chem. B, 106, 7729, 10.1021/jp0209289

Subramanian V., 2001, J. Phys. Chem. B, 105, 11439, 10.1021/jp011118k

Subramanian V., 2004, J. Am. Chem. Soc., 126, 4943, 10.1021/ja0315199

Sayama K., 1994, J. Photochem. Photobiol. A: Chem., 77, 243, 10.1016/1010-6030(94)80049-9

Nakamura R., 2005, J. Phys. Chem. B, 109, 8920, 10.1021/jp0501289

Kim K. S., 1971, J. Am. Chem. Soc., 93, 6296, 10.1021/ja00752a065

Maeda K., 2006, J. Catal., 243, 303, 10.1016/j.jcat.2006.07.023

Zong X., 2008, J. Am. Chem. Soc., 130, 7176, 10.1021/ja8007825

Li Q., 2006, J. Mol. Catal. A: Chem., 258, 83, 10.1016/j.molcata.2006.05.030

Liu G., 2009, J. Phys. Chem. C, 113, 21784, 10.1021/jp907749r

Jang J. S., 2008, J. Phys. Chem. C, 112, 17200, 10.1021/jp804699c

Reber J. F., 1986, J. Phys. Chem., 90, 824, 10.1021/j100277a024

Ohtani B., 1997, J. Phys. Chem. B, 101, 3349, 10.1021/jp962060q

Bao N., 2008, Chem. Mater., 20, 110, 10.1021/cm7029344

Yoshida M., 2009, J. Phys. Chem. C, 113, 10151, 10.1021/jp901418u

Yoshida M., 2009, J. Am. Chem. Soc., 131, 13218, 10.1021/ja904991p

Sayama K., 1997, J. Chem. Soc., Faraday Trans., 93, 1647, 10.1039/a607662i

Maeda K., 2006, J. Phys. Chem. B, 110, 13107, 10.1021/jp0616563

Maeda K., 2007, J. Phys. Chem. C, 111, 4749, 10.1021/jp067254c

Dushman P., 1904, J. Phys. Chem., 8, 481, 10.1021/j150061a001

The corresponding time course is shown inFigure S4(see theSupporting Information). Reproducibility tests using different batches of Pt/ZrO2/TaON showed that the obtained AQY slightly varied from batch to batch but remained within 10%. Because the ratio of H2to O2evolution was sometimes slightly higher than that expected from the stoichiometry, we calculated the AQYs on the basis of the rates of O2evolution derived from the two-step water splitting cycle.

In this case, the NaI concentration was 1.0 mM (15 mg in 100 mL of solution).

Kudo, A.“Nano-structured Photocatalysts for Solar Water Splitting”,ICACC Symposium 74th International Symposium on Nanostructured Materials and Nanocomposites: Development and Applications, Dayton Beach, FL, USA, January 28, 2010.

As shown inFigure S5, no O2evolution was observed in the initial stage of the reaction, due primarily to the detection limit of our gas chromatograph. The AQYs calculated from the initial H2evolution rate and the O2evolution rate were ca. 1 and 0.2%, respectively.

Fang C. M., 2001, J. Mater. Chem., 11, 1248, 10.1039/b005751g

Grins J., 1994, J. Mater. Chem., 4, 1293, 10.1039/JM9940401293

Guenther E., 2001, Mater. Res. Bull., 36, 1399, 10.1016/S0025-5408(01)00632-8

Yashima M., 2007, Chem. Mater., 19, 588, 10.1021/cm062586f

Chun W. A., 2003, J. Phys. Chem. B, 107, 1798, 10.1021/jp027593f

Maeda K., 2009, Appl. Catal. A: Gen., 370, 88, 10.1016/j.apcata.2009.09.024

Lee Y., 2006, J. Phys. Chem. B, 110, 17563, 10.1021/jp063068v

Maeda K., 2007, Chem. Mater., 19, 4092, 10.1021/cm0709828

Porous ZrO2/TaON and TaON electrodes were prepared by pasting viscous slurry onto conducting glass according to a previously described method.(61)A mixture of 50 mg of as-prepared ZrO2/TaON (or TaON) powder (particle size 300−500 nm), 10 μL of acetylacetone (Kanto Chemicals), 10 μL of TritonX (Aldrich), 10 μL of poly(ethylene glycol) 300 (Kanto Chemicals), and 250 μL of distilled water was ground in an agate mortar to prepare the viscous slurry. The slurry was then pasted onto fluorine-doped tin oxide (FTO) glass slides (12 Ω sq−1, transparency 80%, thickness 1 mm; Asahi Glass, Japan) to prepare a 1 × 4 cm2electrode, and the sample was calcined in a nitrogen gas flow at 673 K for 1 h. Thermogravimetric and differential thermal analysis revealed that almost no carbon species, derived from additives in the preparation, are persistent in the as-prepared electrode.

Measurements were performed using a conventional Pyrex electrochemical cell with a platinum wire as a counter electrode and an Ag/AgCl reference electrode under potentiostat control (HSV-100, Hokuto Denko, Japan). Current−voltage curves were measured in an aqueous sodium sulfate solution (Na2SO4, 0.1 M, 100 mL) as a supporting electrolyte. The electrolyte solution was purged with nitrogen prior to the measurements and was maintained at room temperature by a flow of cooling water during the measurements. A 300 W xenon lamp fitted with a cutoff filter was used as a visible light irradiation source. The effective irradiation area was 1 × 3.5 cm2.

Abe R., 2005, Chem. Lett., 34, 1162, 10.1246/cl.2005.1162

Ishikawa A., 2004, J. Phys. Chem. B, 108, 11049, 10.1021/jp048802u

Maeda K., 2008, J. Phys. Chem. C, 112, 3447, 10.1021/jp710758q

Le Paven-Thivet C., 2009, J. Phys. Chem. C, 113, 6157, 10.1021/jp811100r

Hashiguchi H., 2009, Bull. Chem. Soc. Jpn., 82, 401, 10.1246/bcsj.82.401

Orhan E., 2002, Solid State Sci., 4, 1071, 10.1016/S1293-2558(02)01369-9

Mishima T., 2007, Appl. Catal. A: Gen., 324, 77, 10.1016/j.apcata.2007.03.017