Bard A. J., 1995, Acc. Chem. Res., 28, 141, 10.1021/ar00051a007
Lee J. S., 2005, Catal. Surv. Asia, 9, 217, 10.1007/s10563-005-9157-0
Maeda K., 2007, J. Phys. Chem. C, 111, 7851, 10.1021/jp070911w
Osterloh F. E., 2008, Chem. Mater., 20, 35, 10.1021/cm7024203
Kudo A., 2009, Chem. Soc. Rev., 38, 253, 10.1039/B800489G
Ikeda S., 1998, J. Mater. Res., 13, 852, 10.1557/JMR.1998.0113
Kim H. G., 1999, Chem. Commun., 1077, 10.1039/a902892g
Kato H., 2003, J. Am. Chem. Soc., 125, 3082, 10.1021/ja027751g
Miseki Y., 2009, Energy Environ. Sci., 2, 306, 10.1039/b818922f
Scaife D. E., 1980, Solar Energy, 25, 41, 10.1016/0038-092X(80)90405-3
Abe R., 2000, J. Photochem. Photobiol. A: Chem., 137, 63, 10.1016/S1010-6030(00)00351-8
Bae E., 2006, J. Phys. Chem. B, 110, 14792, 10.1021/jp062540+
Li Q., 2007, J. Phys. Chem. C, 111, 8237, 10.1021/jp068703b
Li Q., 2007, J. Phys. Chem. C, 111, 11494, 10.1021/jp072520n
Maeda K., 2009, J. Phys. Chem. C, 113, 7962, 10.1021/jp900842e
Tsuji I., 2004, J. Am. Chem. Soc., 126, 13406, 10.1021/ja048296m
Tsuji I., 2005, Angew. Chem., Int. Ed., 44, 3565, 10.1002/anie.200500314
Bao N., 2008, Chem. Mater., 20, 110, 10.1021/cm7029344
Yan H., 2009, J. Catal., 266, 165, 10.1016/j.jcat.2009.06.024
Hara M., 2000, Chem. Commun., 1903, 10.1039/b003246h
Hara M., 2000, J. Phys. Chem. A, 104, 5275, 10.1021/jp000321x
Jiao F., 2009, Angew. Chem., Int. Ed., 48, 1841, 10.1002/anie.200805534
Silva C. G., 2009, J. Am. Chem. Soc., 131, 13833, 10.1021/ja905467v
Hitoki G., 2002, Chem. Commun., 1698, 10.1039/B202393H
Hitoki G., 2002, Chem. Lett., 31, 736, 10.1246/cl.2002.736
Kim H. G., 2004, J. Am. Chem. Soc., 126, 8912, 10.1021/ja049676a
Kim H. G., 2005, Angew. Chem., Int. Ed., 44, 4585, 10.1002/anie.200500064
Wang X., 2009, Nat. Mater., 8, 76, 10.1038/nmat2317
Wang X., 2009, J. Am. Chem. Soc., 131, 1680, 10.1021/ja809307s
Maeda K., 2009, J. Phys. Chem. C, 113, 4940, 10.1021/jp809119m
Maeda K., 2005, J. Am. Chem. Soc., 127, 8286, 10.1021/ja0518777
Teramura K., 2005, J. Phys. Chem. B, 109, 21915, 10.1021/jp054313y
Maeda K., 2006, Nature, 440, 295, 10.1038/440295a
Maeda K., 2008, J. Catal., 254, 198, 10.1016/j.jcat.2007.12.009
Hisatomi T., 2009, J. Phys. Chem. C, 113, 21458, 10.1021/jp9079662
Lee Y., 2007, J. Phys. Chem. C, 111, 1042, 10.1021/jp0656532
Lee Y., 2007, Chem. Mater., 19, 2120, 10.1021/cm062980d
Takanabe K., 2009, Dalton Trans., 10055, 10.1039/b910318j
Abe R., 2005, J. Phys. Chem. B, 109, 16052, 10.1021/jp052848l
Kato H., 2004, Chem. Lett., 33, 1348, 10.1246/cl.2004.1348
Sasaki Y., 2009, J. Phys. Chem. C, 113, 17536, 10.1021/jp907128k
Bard A. J., 1979, J. Photochem., 10, 59, 10.1016/0047-2670(79)80037-4
Tennakone K., 1986, J. Chem. Soc., Faraday Trans. 2, 82, 1475, 10.1039/f29868201475
Sayama K., 1997, Chem. Phys. Lett., 277, 387, 10.1016/S0009-2614(97)00903-2
Bamwenda G. R., 1999, J. Photochem. Photobiol. A: Chem., 122, 175, 10.1016/S1010-6030(99)00026-X
Fujihara K., 1998, J. Chem. Soc., Faraday Trans., 94, 3705, 10.1039/a806398b
Abe R., 2001, Chem. Phys. Lett., 344, 339, 10.1016/S0009-2614(01)00790-4
Sayama K., 2006, Catal. Commun., 7, 96, 10.1016/j.catcom.2005.09.008
Sayama K., 2001, Chem. Commun., 2416, 10.1039/b107673f
Sayama K., 2002, J. Photochem. Photobiol. A: Chem., 148, 71, 10.1016/S1010-6030(02)00070-9
Kato H., 2007, Bull. Chem. Soc. Jpn., 80, 2457, 10.1246/bcsj.80.2457
Abe R., 2005, Chem. Commun., 3829, 10.1039/b505646b
Higashi M., 2008, Chem. Phys. Lett., 452, 120, 10.1016/j.cplett.2007.12.021
Higashi M., 2009, Chem. Mater., 21, 1543, 10.1021/cm803145n
Higashi M., 2008, Chem. Lett., 37, 138, 10.1246/cl.2008.138
Sasaki Y., 2008, J. Catal., 259, 133, 10.1016/j.jcat.2008.07.017
Wang X., 2009, Chem. Commun., 3452, 10.1039/b904668b
Maeda K., 2008, Bull. Chem. Soc. Jpn., 81, 927, 10.1246/bcsj.81.927
Iwase, A., Kato, H., and Kudo, A.Abstract of the Catalysis Society of Japan Fall Meeting,Toyama, Japan, September 26, 2006; p 27.
Kraeutler B., 1978, J. Am. Chem. Soc., 100, 4317, 10.1021/ja00481a059
Kamat P. V., 2002, J. Phys. Chem. B, 106, 7729, 10.1021/jp0209289
Subramanian V., 2001, J. Phys. Chem. B, 105, 11439, 10.1021/jp011118k
Subramanian V., 2004, J. Am. Chem. Soc., 126, 4943, 10.1021/ja0315199
Sayama K., 1994, J. Photochem. Photobiol. A: Chem., 77, 243, 10.1016/1010-6030(94)80049-9
Nakamura R., 2005, J. Phys. Chem. B, 109, 8920, 10.1021/jp0501289
Kim K. S., 1971, J. Am. Chem. Soc., 93, 6296, 10.1021/ja00752a065
Maeda K., 2006, J. Catal., 243, 303, 10.1016/j.jcat.2006.07.023
Zong X., 2008, J. Am. Chem. Soc., 130, 7176, 10.1021/ja8007825
Li Q., 2006, J. Mol. Catal. A: Chem., 258, 83, 10.1016/j.molcata.2006.05.030
Liu G., 2009, J. Phys. Chem. C, 113, 21784, 10.1021/jp907749r
Jang J. S., 2008, J. Phys. Chem. C, 112, 17200, 10.1021/jp804699c
Reber J. F., 1986, J. Phys. Chem., 90, 824, 10.1021/j100277a024
Ohtani B., 1997, J. Phys. Chem. B, 101, 3349, 10.1021/jp962060q
Bao N., 2008, Chem. Mater., 20, 110, 10.1021/cm7029344
Yoshida M., 2009, J. Phys. Chem. C, 113, 10151, 10.1021/jp901418u
Yoshida M., 2009, J. Am. Chem. Soc., 131, 13218, 10.1021/ja904991p
Sayama K., 1997, J. Chem. Soc., Faraday Trans., 93, 1647, 10.1039/a607662i
Maeda K., 2006, J. Phys. Chem. B, 110, 13107, 10.1021/jp0616563
Maeda K., 2007, J. Phys. Chem. C, 111, 4749, 10.1021/jp067254c
Dushman P., 1904, J. Phys. Chem., 8, 481, 10.1021/j150061a001
The corresponding time course is shown inFigure S4(see theSupporting Information). Reproducibility tests using different batches of Pt/ZrO2/TaON showed that the obtained AQY slightly varied from batch to batch but remained within 10%. Because the ratio of H2to O2evolution was sometimes slightly higher than that expected from the stoichiometry, we calculated the AQYs on the basis of the rates of O2evolution derived from the two-step water splitting cycle.
In this case, the NaI concentration was 1.0 mM (15 mg in 100 mL of solution).
Kudo, A.“Nano-structured Photocatalysts for Solar Water Splitting”,ICACC Symposium 74th International Symposium on Nanostructured Materials and Nanocomposites: Development and Applications, Dayton Beach, FL, USA, January 28, 2010.
As shown inFigure S5, no O2evolution was observed in the initial stage of the reaction, due primarily to the detection limit of our gas chromatograph. The AQYs calculated from the initial H2evolution rate and the O2evolution rate were ca. 1 and 0.2%, respectively.
Fang C. M., 2001, J. Mater. Chem., 11, 1248, 10.1039/b005751g
Grins J., 1994, J. Mater. Chem., 4, 1293, 10.1039/JM9940401293
Guenther E., 2001, Mater. Res. Bull., 36, 1399, 10.1016/S0025-5408(01)00632-8
Yashima M., 2007, Chem. Mater., 19, 588, 10.1021/cm062586f
Chun W. A., 2003, J. Phys. Chem. B, 107, 1798, 10.1021/jp027593f
Maeda K., 2009, Appl. Catal. A: Gen., 370, 88, 10.1016/j.apcata.2009.09.024
Lee Y., 2006, J. Phys. Chem. B, 110, 17563, 10.1021/jp063068v
Maeda K., 2007, Chem. Mater., 19, 4092, 10.1021/cm0709828
Porous ZrO2/TaON and TaON electrodes were prepared by pasting viscous slurry onto conducting glass according to a previously described method.(61)A mixture of 50 mg of as-prepared ZrO2/TaON (or TaON) powder (particle size 300−500 nm), 10 μL of acetylacetone (Kanto Chemicals), 10 μL of TritonX (Aldrich), 10 μL of poly(ethylene glycol) 300 (Kanto Chemicals), and 250 μL of distilled water was ground in an agate mortar to prepare the viscous slurry. The slurry was then pasted onto fluorine-doped tin oxide (FTO) glass slides (12 Ω sq−1, transparency 80%, thickness 1 mm; Asahi Glass, Japan) to prepare a 1 × 4 cm2electrode, and the sample was calcined in a nitrogen gas flow at 673 K for 1 h. Thermogravimetric and differential thermal analysis revealed that almost no carbon species, derived from additives in the preparation, are persistent in the as-prepared electrode.
Measurements were performed using a conventional Pyrex electrochemical cell with a platinum wire as a counter electrode and an Ag/AgCl reference electrode under potentiostat control (HSV-100, Hokuto Denko, Japan). Current−voltage curves were measured in an aqueous sodium sulfate solution (Na2SO4, 0.1 M, 100 mL) as a supporting electrolyte. The electrolyte solution was purged with nitrogen prior to the measurements and was maintained at room temperature by a flow of cooling water during the measurements. A 300 W xenon lamp fitted with a cutoff filter was used as a visible light irradiation source. The effective irradiation area was 1 × 3.5 cm2.
Abe R., 2005, Chem. Lett., 34, 1162, 10.1246/cl.2005.1162
Ishikawa A., 2004, J. Phys. Chem. B, 108, 11049, 10.1021/jp048802u
Maeda K., 2008, J. Phys. Chem. C, 112, 3447, 10.1021/jp710758q
Le Paven-Thivet C., 2009, J. Phys. Chem. C, 113, 6157, 10.1021/jp811100r
Hashiguchi H., 2009, Bull. Chem. Soc. Jpn., 82, 401, 10.1246/bcsj.82.401
Orhan E., 2002, Solid State Sci., 4, 1071, 10.1016/S1293-2558(02)01369-9
Mishima T., 2007, Appl. Catal. A: Gen., 324, 77, 10.1016/j.apcata.2007.03.017