Efficient InGaP/GaAs DJ solar cell with double back surface field layer

P.P. Nayak1, J.P. Dutta1, G.P. Mishra1
1Dept. of Electronics and Instrumentation Engg., Institute of Technical Education & Research, Siksha ‘O’ Anusandhan University, Khandagiri Square, Bhubaneswar, India

Tài liệu tham khảo

King, 2007, 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells, Appl. Phys. Lett., 90, 183516, 10.1063/1.2734507 King, 2002, High-efficiency space and terrestrial multijunction solar cells through bandgap control in cell structures Green, 1994, Novel parallel multijunction solar cell, Appl. Phys. Lett., 65, 2907, 10.1063/1.112526 Geisz, 2008, 40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions, Appl. Phys. Lett., 93, 123505, 10.1063/1.2988497 Marina, 2013, Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency >50%, Appl. Phys. Lett., 102, 033901, 10.1063/1.4758300 Luque, 2011, Will we exceed 50% efficiency in photovoltaics?, J. Appl. Phys., 110, 031301, 10.1063/1.3600702 Galiana, 2006, A comparative study of BSF layers for GaAs-based single-junction or multijunction concentrator solar cells, Semicond. Sci. Technol, 21, 1387, 10.1088/0268-1242/21/10/003 Aiken, 2000, High performance anti-reflection coatings for broadband multi-junction solar cells, Sol. Energy Mater. and Sol. Cells, 64, 393, 10.1016/S0927-0248(00)00253-1 Aiken, 2000, Antireflection coating design for series interconnected multi-junction solar cells, Prog. Photovoltaics: Res. Appl., 8, 563, 10.1002/1099-159X(200011/12)8:6<563::AID-PIP327>3.0.CO;2-8 King, 2000, Next generation, high efficiency III–V multi-junction solar cells, 998 Lillington, 2000, A 32.3% efficient triple junction GaInP2/GaAs/Ge concentrator solar cells, 516 Karam, 1999, Development and characterization of high-efficiency Ga 0.5/In P 0.5/GaAs/Ge dual- and triple-junction solar cells, IEEE Trans. Electron. Devices, 46, 2116, 10.1109/16.792006 Biron, 2011, Window layer with p doped silicon oxide for high V oc thin-film silicon n-i-p solar cells, J. Appl. Phys., 110, 124511, 10.1063/1.3669389 Solanki, 2012 Vurgaftman, 2001, Band parameters for III–V semiconductors and their alloys, J. Appl. Phys., 89, 5815, 10.1063/1.1368156 Lee, 2002, The investigation for various treatments of InAlGaP Schottky diode, 23, 99 Gale, 1984, New high-efficiency GaAs solar cell structure using a heterostructure back-surface field, 1422 DeMoulin, 1987, Back-surface field design for n/p GaAs cells solar cells, Sci. Technol. Appl. Econ, 20, 229 DeMoulin, 1989, Projections of GaAs solar-cell performance limits based on two-dimensional numerical simulation, IEEE Trans. Electron Devices, 36, 897, 10.1109/16.299671 Wojtczuk, 1993, Comparison of windows for p-on-n InGaP solar cells, 655 Jolson Singh, 2012, Highly efficient ARC less InGaP/GaAs DJ solar cell numerical modelling using optimized InAlGaP BSF layers, Opt. Quant. Electron., 43 SILVACO Data Systems Inc., 2009 Lueck, 2006, Dual junction GaInP/GaAs solar cells grown on metamorphic SiGe/Si substrates with high open circuit voltage, IEEE Electron. Device Lett., 27, 142, 10.1109/LED.2006.870250 Leem, 2010, Optimum design of InGaP/GaAs dual-junction solar cells with different tunnel diodes, Opt. Quantum Electron, 41, 605, 10.1007/s11082-010-9367-1