Efficient Electrocatalytic and Photoelectrochemical Hydrogen Generation Using MoS2 and Related Compounds
Tóm tắt
Từ khóa
Tài liệu tham khảo
Chu, 2012, Opportunities and challenges for a sustainable energy future, Nature, 488, 294, 10.1038/nature11475
Lewis, 2006, Powering the planet: chemical challenges in solar energy utilization, Proc. Natl. Acad. Sci. USA, 103, 15729, 10.1073/pnas.0603395103
Bard, 1995, Artificial photosynthesis - solar splitting of water to hydrogen and oxygen, Acc. Chem. Res., 28, 141, 10.1021/ar00051a007
McKone, 2014, Will solar-driven water-splitting devices see the light of day?, Chem. Mater., 26, 407, 10.1021/cm4021518
Khaselev, 1998, A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting, Science, 280, 425, 10.1126/science.280.5362.425
Faber, 2014, Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications, Energy Environ. Sci., 7, 3519, 10.1039/C4EE01760A
Zeng, 2015, Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction, J. Mater. Chem. A, 3, 14942, 10.1039/C5TA02974K
Benck, 2014, Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials, ACS Catal., 4, 3957, 10.1021/cs500923c
Laursen, 2012, Molybdenum sulfides-efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution, Energy Environ. Sci., 5, 5577, 10.1039/c2ee02618j
Morales-Guio, 2014, Amorphous molybdenum sulfides as hydrogen evolution catalysts, Acc. Chem. Res., 47, 2671, 10.1021/ar5002022
Faber, 2014, High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures, J. Am. Chem. Soc., 136, 10053, 10.1021/ja504099w
Caban-Acevedo, 2015, Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide, Nat. Mater., 14, 1245, 10.1038/nmat4410
Vesborg, 2015, Recent development in hydrogen evolution reaction catalysts and their practical implementation, J. Phys. Chem. Lett., 6, 951, 10.1021/acs.jpclett.5b00306
Popczun, 2013, Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction, J. Am. Chem. Soc., 135, 9267, 10.1021/ja403440e
Callejas, 2016, Synthesis, characterization, and properties of metal phosphide catalysts for the hydrogen-evolution reaction, Chem. Mater., 28, 6027, 10.1021/acs.chemmater.6b02148
Chhowalla, 2013, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem., 5, 263, 10.1038/nchem.1589
Wang, 2012, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nano, 7, 699, 10.1038/nnano.2012.193
Cook, 2010, Solar energy supply and storage for the legacy and non legacy worlds, Chem. Rev., 110, 6474, 10.1021/cr100246c
Bockris, 1952, The mechanism of the cathodic hydrogen evolution reaction, J. Electrochem. Soc., 99, 169, 10.1149/1.2779692
Norskov, 2005, Trends in the exchange current for hydrogen evolution, J. Electrochem. Soc., 152, J23, 10.1149/1.1856988
Hinnemann, 2005, Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution, J. Am. Chem. Soc., 127, 5308, 10.1021/ja0504690
Greeley, 2006, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution, Nat. Mater., 5, 909, 10.1038/nmat1752
Chianelli, 2006, Catalytic properties of single layers of transition metal sulfide catalytic materials, Catal. Rev., 48, 1, 10.1080/01614940500439776
Yang, 1991, Structure of single-molecular-layer MoS2, Phys. Rev. B, 43, 12053, 10.1103/PhysRevB.43.12053
Mak, 2010, Atomically thin MoS2: a new direct-gap semiconductor, Phys. Rev. Lett., 105, 136805, 10.1103/PhysRevLett.105.136805
Mouri, 2013, Tunable photoluminescence of monolayer MoS2 via chemical doping, Nano Lett., 13, 5944, 10.1021/nl403036h
Lee, 2012, MoS2 nanosheet phototransistors with thickness-modulated optical energy gap, Nano Lett., 12, 3695, 10.1021/nl301485q
Wu, 2015, Monolayer semiconductor nanocavity lasers with ultralow thresholds, Nature, 520, 69, 10.1038/nature14290
Tributsch, 1977, Electrochemistry and photochemistry of Mos2 layer crystals. 1, J. Electroanal. Chem., 81, 97, 10.1016/S0022-0728(77)80363-X
Jaramillo, 2007, Identification of active edge sites for electrochemical H-2 evolution from MoS2 nanocatalysts, Science, 317, 100, 10.1126/science.1141483
Kong, 2013, Synthesis of MoS2 and MoSe2 films with vertically aligned layers, Nano Lett., 13, 1341, 10.1021/nl400258t
Lukowski, 2013, Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets, J. Am. Chem. Soc., 135, 10274, 10.1021/ja404523s
Yang, 2015, Single-crystal atomic-layered molybdenum disulfide nanobelts with high surface activity, ACS Nano, 9, 6478, 10.1021/acsnano.5b02188
Kibsgaard, 2012, Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis, Nat. Mater., 11, 963, 10.1038/nmat3439
Xie, 2013, Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution, Adv. Mater., 25, 5807, 10.1002/adma.201302685
Hong, 2015, Exploring atomic defects in molybdenum disulphide monolayers, Nat. Commun., 6, 6293, 10.1038/ncomms7293
Qiu, 2013, Hopping transport through defect-induced localized states in molybdenum disulphide, Nat. Commun., 4, 2642, 10.1038/ncomms3642
Yu, 2014, Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering, Nat. Commun., 5, 5290, 10.1038/ncomms6290
Lin, 2015, Activating and tuning basal planes of MoO2, MoS2, and MoSe2 for hydrogen evolution reaction, Phys. Chem. Chem. Phys., 17, 29305, 10.1039/C5CP04760A
Li, 2016, Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies, Nat. Mater., 15, 48, 10.1038/nmat4465
Li, 2016, Kinetic study of hydrogen evolution reaction over strained MoS2 with sulfur vacancies using scanning electrochemical microscopy, J. Am. Chem. Soc., 138, 5123, 10.1021/jacs.6b01377
Yin, 2016, Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets, J. Am. Chem. Soc., 13, 7965, 10.1021/jacs.6b03714
Xie, 2013, Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution, J. Am. Chem. Soc., 135, 17881, 10.1021/ja408329q
Ge, 2012, Hydrogen evolution across nano-Schottky junctions at carbon supported MoS2 catalysts in biphasic liquid systems, Chem. Commun., 48, 6484, 10.1039/c2cc31398g
Voiry, 2013, Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction, Nano Lett., 13, 6222, 10.1021/nl403661s
Ambrosi, 2015, Lithium intercalation compound dramatically influences the electrochemical properties of exfoliated MoS2, Small, 11, 605, 10.1002/smll.201400401
Wang, 2013, Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction, Proc. Natl. Acad. Sci. USA, 110, 19701, 10.1073/pnas.1316792110
Voiry, 2013, Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution, Nat. Mater., 12, 850, 10.1038/nmat3700
Lukowski, 2014, Highly active hydrogen evolution catalysis from metallic WS2 nanosheets, Energy Environ. Sci., 7, 2608, 10.1039/C4EE01329H
Eng, 2014, Electrochemistry of transition metal dichalcogenides: strong dependence on the metal-to-chalcogen composition and exfoliation method, ACS Nano, 8, 12185, 10.1021/nn503832j
Ambrosi, 2015, 2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition, Chem. Commun., 51, 8450, 10.1039/C5CC00803D
Gao, 2015, Charge mediated semiconducting-to-metallic phase transition in molybdenum disulfide monolayer and hydrogen evolution reaction in new 1T'Phase, J. Phys. Chem. C, 119, 13124, 10.1021/acs.jpcc.5b04658
Putungan, 2015, A first-principles examination of conducting monolayer 1T′-MX2 (M = Mo, W; X = S, Se, Te): promising catalysts for hydrogen evolution reaction and its enhancement by strain, Phys. Chem. Chem. Phys., 17, 21702, 10.1039/C5CP03799A
Tsai, 2015, Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides, Surf. Sci., 640, 133, 10.1016/j.susc.2015.01.019
Tang, 2016, Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles, ACS Catal., 6, 4953, 10.1021/acscatal.6b01211
Ye, 2016, Defects engineered monolayer MoS2 for improved hydrogen evolution reaction, Nano Lett., 16, 1097, 10.1021/acs.nanolett.5b04331
Li, 2011, MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction, J. Am. Chem. Soc., 133, 7296, 10.1021/ja201269b
Liao, 2013, MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution, Adv. Funct. Mater., 23, 5326, 10.1002/adfm.201300318
Yan, 2013, Facile synthesis of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction, Nanoscale, 5, 7768, 10.1039/c3nr02994h
Chang, 2013, Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams, Adv. Mater., 25, 756, 10.1002/adma.201202920
Merki, 2011, Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water, Chem. Sci., 2, 1262, 10.1039/C1SC00117E
Vrubel, 2013, Growth and activation of an amorphous molybdenum sulfide hydrogen evolving catalyst, ACS Catal., 3, 2002, 10.1021/cs400441u
Merki, 2012, Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution, Chem. Sci., 3, 2515, 10.1039/c2sc20539d
Saadi, 2014, Operand synthesis of macroporous molybdenum diselenide films for electrocatalysis of the hydrogen-evolution reaction, ACS Catal., 4, 2866, 10.1021/cs500412u
Benck, 2012, Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity, ACS Catal., 2, 1916, 10.1021/cs300451q
Vrubel, 2012, Hydrogen evolution catalyzed by MoS3 and MoS2 particles, Energy Environ. Sci., 5, 6136, 10.1039/c2ee02835b
Huang, 2015, The reaction mechanism with free energy barriers for electrochemical dihydrogen evolution on MoS2, J. Am. Chem. Soc., 137, 6692, 10.1021/jacs.5b03329
Tran, 2016, Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide, Nat. Mater., 15, 640, 10.1038/nmat4588
Lassalle-Kaiser, 2015, Evidence from in Situ X-ray absorption spectroscopy for the involvement of terminal disulfide in the reduction of protons by an amorphous molybdenum sulfide electrocatalyst, J. Am. Chem. Soc., 137, 314, 10.1021/ja510328m
Karunadasa, 2012, A molecular MoS2 edge site mimic for catalytic hydrogen generation, Science, 335, 698, 10.1126/science.1215868
Huang, 2015, Dimeric [Mo2S12]2− cluster: a molecular analogue of MoS2 edges for superior hydrogen-evolution electrocatalysis, Angew. Chem. Int. Ed. Engl., 54, 15181, 10.1002/anie.201507529
Kibsgaard, 2014, Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13](2−) clusters, Nat. Chem., 6, 248, 10.1038/nchem.1853
Zhang, 2015, Amorphous MoSxCly electrocatalyst supported by vertical graphene for efficient electrochemical and photoelectrochemical hydrogen generation, Energy Environ. Sci., 8, 862, 10.1039/C4EE03240C
Ding, 2014, Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2, J. Am. Chem. Soc., 136, 8504, 10.1021/ja5025673
Gong, 2015, Ultrathin MoS2(1–x)Se2x alloy nanoflakes for electrocatalytic hydrogen evolution reaction, ACS Catal., 5, 2213, 10.1021/cs501970w
Xu, 2014, Component-controllable WS2(1–x)Se2x nanotubes for efficient hydrogen evolution reaction, ACS Nano, 8, 8468, 10.1021/nn503027k
Chen, 2015, Silicon decorated with amorphous cobalt molybdenum sulfide catalyst as an efficient photocathode for solar hydrogen generation, ACS Nano, 9, 3829, 10.1021/nn506819m
Tran, 2013, Novel cobalt/nickel-tungsten-sulfide catalysts for electrocatalytic hydrogen generation from water, Energy Environ. Sci., 6, 2452, 10.1039/c3ee40600h
Staszak-Jirkovsky, 2016, Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction, Nat. Mater., 15, 197, 10.1038/nmat4481
Warren, 2014, Silicon microwire arrays for solar energy-conversion applications, J. Phys. Chem. C, 118, 747, 10.1021/jp406280x
Liu, 2014, Semiconductor nanowires for artificial photosynthesis, Chem. Mater., 26, 415, 10.1021/cm4023198
Li, 2012, Facile solution synthesis of a-FeF3.3H2O nanowires and their conversion to a-Fe2O3 nanowires for photoelectrochemical application, Nano Lett., 12, 724, 10.1021/nl2036854
Wang, 2013, Realizing high-efficiency omnidirectional n-type Si solar cells via the hierarchical architecture concept with radial junctions, ACS Nano, 7, 9325, 10.1021/nn404015y
Zong, 2008, Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation, J. Am. Chem. Soc., 130, 7176, 10.1021/ja8007825
Reece, 2011, Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts, Science, 334, 645, 10.1126/science.1209816
Boettcher, 2010, Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes, Science, 327, 185, 10.1126/science.1180783
Hou, 2011, Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution, Nat. Mater., 10, 434, 10.1038/nmat3008
Boettcher, 2011, Photoelectrochemical hydrogen evolution using Si microwire arrays, J. Am. Chem. Soc., 133, 1216, 10.1021/ja108801m
Kelzenberg, 2010, Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications, Nat. Mater., 9, 368, 10.1038/nmat2727
McKone, 2011, Evaluation of Pt, Ni, and Ni-Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes, Energy Environ. Sci., 4, 3573, 10.1039/c1ee01488a
Warren, 2012, Hydrogen-evolution characteristics of Ni-Mo-coated, radial junction, n(+)p-silicon microwire array photocathodes, Energy Environ. Sci., 5, 9653, 10.1039/c2ee23192a
Ding, 2015, Designing efficient solar-driven hydrogen evolution photocathodes using semitransparent MoQ(x)Cl(y) (Q = S, Se) catalysts on Si micropyramids, Adv. Mater., 27, 6511, 10.1002/adma.201501884
Seger, 2012, Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n plus p-silicon photocathode, Angew. Chem. Int. Ed. Engl., 51, 9128, 10.1002/anie.201203585
Benck, 2014, Designing active and stable silicon photocathodes for solar hydrogen production using molybdenum sulfide nanomaterials, Adv. Energy Mater., 4, 1400739, 10.1002/aenm.201400739
Morales-Guio, 2014, Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst, Nat. Commun., 5, 3059, 10.1038/ncomms4059
Morales-Guio, 2015, Photoelectrochemical hydrogen production in alkaline solutions using Cu2O coated with earth-abundant hydrogen evolution catalysts, Angew. Chem. Int. Ed. Engl., 54, 664, 10.1002/anie.201410569
Gao, 2014, Photoelectrochemical hydrogen production on InP nanowire arrays with molybdenum sulfide electrocatalysts, Nano Lett., 14, 3715, 10.1021/nl404540f
Standing, 2015, Efficient water reduction with gallium phosphide nanowires, Nat. Commun., 6, 7824, 10.1038/ncomms8824
Britto, 2016, Molybdenum disulfide as a protection layer and catalyst for gallium indium phosphide solar water splitting photocathodes, J. Phys. Chem. Lett., 7, 2044, 10.1021/acs.jpclett.6b00563
Zhang, 2016, p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production, Energy Environ. Sci., 9, 3113, 10.1039/C6EE02215D
Unold, 2011, Nonconventional (non-silicon-based) photovoltaic materials, Annu. Rev. Mater. Res., 41, 297, 10.1146/annurev-matsci-062910-100437