Efficient Electrocatalytic and Photoelectrochemical Hydrogen Generation Using MoS2 and Related Compounds

Chem - Tập 1 Số 5 - Trang 699-726 - 2016
Qi Ding1, Bo Song2,3, Ping Xu4, Song Jin1
1Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA.
2Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080, China
3Department of Physics, Harbin Institute of Technology, Harbin 150080, China
4MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chu, 2012, Opportunities and challenges for a sustainable energy future, Nature, 488, 294, 10.1038/nature11475

Turner, 2004, Sustainable hydrogen production, Science, 305, 972, 10.1126/science.1103197

Lewis, 2006, Powering the planet: chemical challenges in solar energy utilization, Proc. Natl. Acad. Sci. USA, 103, 15729, 10.1073/pnas.0603395103

Walter, 2010, Solar water splitting cells, Chem. Rev., 110, 6446, 10.1021/cr1002326

Bard, 1995, Artificial photosynthesis - solar splitting of water to hydrogen and oxygen, Acc. Chem. Res., 28, 141, 10.1021/ar00051a007

McKone, 2014, Will solar-driven water-splitting devices see the light of day?, Chem. Mater., 26, 407, 10.1021/cm4021518

Khaselev, 1998, A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting, Science, 280, 425, 10.1126/science.280.5362.425

Faber, 2014, Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications, Energy Environ. Sci., 7, 3519, 10.1039/C4EE01760A

Zeng, 2015, Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction, J. Mater. Chem. A, 3, 14942, 10.1039/C5TA02974K

Benck, 2014, Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials, ACS Catal., 4, 3957, 10.1021/cs500923c

Laursen, 2012, Molybdenum sulfides-efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution, Energy Environ. Sci., 5, 5577, 10.1039/c2ee02618j

Morales-Guio, 2014, Amorphous molybdenum sulfides as hydrogen evolution catalysts, Acc. Chem. Res., 47, 2671, 10.1021/ar5002022

Faber, 2014, High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures, J. Am. Chem. Soc., 136, 10053, 10.1021/ja504099w

Caban-Acevedo, 2015, Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide, Nat. Mater., 14, 1245, 10.1038/nmat4410

Vesborg, 2015, Recent development in hydrogen evolution reaction catalysts and their practical implementation, J. Phys. Chem. Lett., 6, 951, 10.1021/acs.jpclett.5b00306

Popczun, 2013, Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction, J. Am. Chem. Soc., 135, 9267, 10.1021/ja403440e

Callejas, 2016, Synthesis, characterization, and properties of metal phosphide catalysts for the hydrogen-evolution reaction, Chem. Mater., 28, 6027, 10.1021/acs.chemmater.6b02148

Chhowalla, 2013, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem., 5, 263, 10.1038/nchem.1589

Xu, 2013, Graphene-like two-dimensional materials, Chem. Rev., 113, 3766, 10.1021/cr300263a

Wang, 2012, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nano, 7, 699, 10.1038/nnano.2012.193

Cook, 2010, Solar energy supply and storage for the legacy and non legacy worlds, Chem. Rev., 110, 6474, 10.1021/cr100246c

Bockris, 1952, The mechanism of the cathodic hydrogen evolution reaction, J. Electrochem. Soc., 99, 169, 10.1149/1.2779692

Norskov, 2005, Trends in the exchange current for hydrogen evolution, J. Electrochem. Soc., 152, J23, 10.1149/1.1856988

Hinnemann, 2005, Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution, J. Am. Chem. Soc., 127, 5308, 10.1021/ja0504690

Greeley, 2006, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution, Nat. Mater., 5, 909, 10.1038/nmat1752

Chianelli, 2006, Catalytic properties of single layers of transition metal sulfide catalytic materials, Catal. Rev., 48, 1, 10.1080/01614940500439776

Yang, 1991, Structure of single-molecular-layer MoS2, Phys. Rev. B, 43, 12053, 10.1103/PhysRevB.43.12053

Mak, 2010, Atomically thin MoS2: a new direct-gap semiconductor, Phys. Rev. Lett., 105, 136805, 10.1103/PhysRevLett.105.136805

Mouri, 2013, Tunable photoluminescence of monolayer MoS2 via chemical doping, Nano Lett., 13, 5944, 10.1021/nl403036h

Yin, 2012, Single-layer MoS2 phototransistors, ACS Nano, 6, 74, 10.1021/nn2024557

Lee, 2012, MoS2 nanosheet phototransistors with thickness-modulated optical energy gap, Nano Lett., 12, 3695, 10.1021/nl301485q

Wu, 2015, Monolayer semiconductor nanocavity lasers with ultralow thresholds, Nature, 520, 69, 10.1038/nature14290

Tributsch, 1977, Electrochemistry and photochemistry of Mos2 layer crystals. 1, J. Electroanal. Chem., 81, 97, 10.1016/S0022-0728(77)80363-X

Jaramillo, 2007, Identification of active edge sites for electrochemical H-2 evolution from MoS2 nanocatalysts, Science, 317, 100, 10.1126/science.1141483

Kong, 2013, Synthesis of MoS2 and MoSe2 films with vertically aligned layers, Nano Lett., 13, 1341, 10.1021/nl400258t

Lukowski, 2013, Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets, J. Am. Chem. Soc., 135, 10274, 10.1021/ja404523s

Yang, 2015, Single-crystal atomic-layered molybdenum disulfide nanobelts with high surface activity, ACS Nano, 9, 6478, 10.1021/acsnano.5b02188

Kibsgaard, 2012, Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis, Nat. Mater., 11, 963, 10.1038/nmat3439

Xie, 2013, Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution, Adv. Mater., 25, 5807, 10.1002/adma.201302685

Hong, 2015, Exploring atomic defects in molybdenum disulphide monolayers, Nat. Commun., 6, 6293, 10.1038/ncomms7293

Qiu, 2013, Hopping transport through defect-induced localized states in molybdenum disulphide, Nat. Commun., 4, 2642, 10.1038/ncomms3642

Yu, 2014, Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering, Nat. Commun., 5, 5290, 10.1038/ncomms6290

Lin, 2015, Activating and tuning basal planes of MoO2, MoS2, and MoSe2 for hydrogen evolution reaction, Phys. Chem. Chem. Phys., 17, 29305, 10.1039/C5CP04760A

Li, 2016, Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies, Nat. Mater., 15, 48, 10.1038/nmat4465

Li, 2016, Kinetic study of hydrogen evolution reaction over strained MoS2 with sulfur vacancies using scanning electrochemical microscopy, J. Am. Chem. Soc., 138, 5123, 10.1021/jacs.6b01377

Yin, 2016, Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets, J. Am. Chem. Soc., 13, 7965, 10.1021/jacs.6b03714

Xie, 2013, Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution, J. Am. Chem. Soc., 135, 17881, 10.1021/ja408329q

Ge, 2012, Hydrogen evolution across nano-Schottky junctions at carbon supported MoS2 catalysts in biphasic liquid systems, Chem. Commun., 48, 6484, 10.1039/c2cc31398g

Voiry, 2013, Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction, Nano Lett., 13, 6222, 10.1021/nl403661s

Ambrosi, 2015, Lithium intercalation compound dramatically influences the electrochemical properties of exfoliated MoS2, Small, 11, 605, 10.1002/smll.201400401

Wang, 2013, Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction, Proc. Natl. Acad. Sci. USA, 110, 19701, 10.1073/pnas.1316792110

Voiry, 2013, Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution, Nat. Mater., 12, 850, 10.1038/nmat3700

Lukowski, 2014, Highly active hydrogen evolution catalysis from metallic WS2 nanosheets, Energy Environ. Sci., 7, 2608, 10.1039/C4EE01329H

Eng, 2014, Electrochemistry of transition metal dichalcogenides: strong dependence on the metal-to-chalcogen composition and exfoliation method, ACS Nano, 8, 12185, 10.1021/nn503832j

Ambrosi, 2015, 2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition, Chem. Commun., 51, 8450, 10.1039/C5CC00803D

Gao, 2015, Charge mediated semiconducting-to-metallic phase transition in molybdenum disulfide monolayer and hydrogen evolution reaction in new 1T'Phase, J. Phys. Chem. C, 119, 13124, 10.1021/acs.jpcc.5b04658

Putungan, 2015, A first-principles examination of conducting monolayer 1T′-MX2 (M = Mo, W; X = S, Se, Te): promising catalysts for hydrogen evolution reaction and its enhancement by strain, Phys. Chem. Chem. Phys., 17, 21702, 10.1039/C5CP03799A

Tsai, 2015, Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides, Surf. Sci., 640, 133, 10.1016/j.susc.2015.01.019

Tang, 2016, Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles, ACS Catal., 6, 4953, 10.1021/acscatal.6b01211

Ye, 2016, Defects engineered monolayer MoS2 for improved hydrogen evolution reaction, Nano Lett., 16, 1097, 10.1021/acs.nanolett.5b04331

Li, 2011, MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction, J. Am. Chem. Soc., 133, 7296, 10.1021/ja201269b

Liao, 2013, MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution, Adv. Funct. Mater., 23, 5326, 10.1002/adfm.201300318

Yan, 2013, Facile synthesis of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction, Nanoscale, 5, 7768, 10.1039/c3nr02994h

Chang, 2013, Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams, Adv. Mater., 25, 756, 10.1002/adma.201202920

Merki, 2011, Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water, Chem. Sci., 2, 1262, 10.1039/C1SC00117E

Vrubel, 2013, Growth and activation of an amorphous molybdenum sulfide hydrogen evolving catalyst, ACS Catal., 3, 2002, 10.1021/cs400441u

Merki, 2012, Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution, Chem. Sci., 3, 2515, 10.1039/c2sc20539d

Saadi, 2014, Operand synthesis of macroporous molybdenum diselenide films for electrocatalysis of the hydrogen-evolution reaction, ACS Catal., 4, 2866, 10.1021/cs500412u

Benck, 2012, Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity, ACS Catal., 2, 1916, 10.1021/cs300451q

Vrubel, 2012, Hydrogen evolution catalyzed by MoS3 and MoS2 particles, Energy Environ. Sci., 5, 6136, 10.1039/c2ee02835b

Huang, 2015, The reaction mechanism with free energy barriers for electrochemical dihydrogen evolution on MoS2, J. Am. Chem. Soc., 137, 6692, 10.1021/jacs.5b03329

Tran, 2016, Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide, Nat. Mater., 15, 640, 10.1038/nmat4588

Lassalle-Kaiser, 2015, Evidence from in Situ X-ray absorption spectroscopy for the involvement of terminal disulfide in the reduction of protons by an amorphous molybdenum sulfide electrocatalyst, J. Am. Chem. Soc., 137, 314, 10.1021/ja510328m

Karunadasa, 2012, A molecular MoS2 edge site mimic for catalytic hydrogen generation, Science, 335, 698, 10.1126/science.1215868

Huang, 2015, Dimeric [Mo2S12]2− cluster: a molecular analogue of MoS2 edges for superior hydrogen-evolution electrocatalysis, Angew. Chem. Int. Ed. Engl., 54, 15181, 10.1002/anie.201507529

Kibsgaard, 2014, Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13](2−) clusters, Nat. Chem., 6, 248, 10.1038/nchem.1853

Zhang, 2015, Amorphous MoSxCly electrocatalyst supported by vertical graphene for efficient electrochemical and photoelectrochemical hydrogen generation, Energy Environ. Sci., 8, 862, 10.1039/C4EE03240C

Ding, 2014, Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2, J. Am. Chem. Soc., 136, 8504, 10.1021/ja5025673

Gong, 2015, Ultrathin MoS2(1–x)Se2x alloy nanoflakes for electrocatalytic hydrogen evolution reaction, ACS Catal., 5, 2213, 10.1021/cs501970w

Xu, 2014, Component-controllable WS2(1–x)Se2x nanotubes for efficient hydrogen evolution reaction, ACS Nano, 8, 8468, 10.1021/nn503027k

Chen, 2015, Silicon decorated with amorphous cobalt molybdenum sulfide catalyst as an efficient photocathode for solar hydrogen generation, ACS Nano, 9, 3829, 10.1021/nn506819m

Tran, 2013, Novel cobalt/nickel-tungsten-sulfide catalysts for electrocatalytic hydrogen generation from water, Energy Environ. Sci., 6, 2452, 10.1039/c3ee40600h

Staszak-Jirkovsky, 2016, Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction, Nat. Mater., 15, 197, 10.1038/nmat4481

Warren, 2014, Silicon microwire arrays for solar energy-conversion applications, J. Phys. Chem. C, 118, 747, 10.1021/jp406280x

Liu, 2014, Semiconductor nanowires for artificial photosynthesis, Chem. Mater., 26, 415, 10.1021/cm4023198

Li, 2012, Facile solution synthesis of a-FeF3.3H2O nanowires and their conversion to a-Fe2O3 nanowires for photoelectrochemical application, Nano Lett., 12, 724, 10.1021/nl2036854

Wang, 2013, Realizing high-efficiency omnidirectional n-type Si solar cells via the hierarchical architecture concept with radial junctions, ACS Nano, 7, 9325, 10.1021/nn404015y

Zong, 2008, Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation, J. Am. Chem. Soc., 130, 7176, 10.1021/ja8007825

Reece, 2011, Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts, Science, 334, 645, 10.1126/science.1209816

Boettcher, 2010, Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes, Science, 327, 185, 10.1126/science.1180783

Sun, 2014, Enabling silicon for solar-fuel production, Chem. Rev., 114, 8662, 10.1021/cr300459q

Hou, 2011, Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution, Nat. Mater., 10, 434, 10.1038/nmat3008

Boettcher, 2011, Photoelectrochemical hydrogen evolution using Si microwire arrays, J. Am. Chem. Soc., 133, 1216, 10.1021/ja108801m

Kelzenberg, 2010, Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications, Nat. Mater., 9, 368, 10.1038/nmat2727

McKone, 2011, Evaluation of Pt, Ni, and Ni-Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes, Energy Environ. Sci., 4, 3573, 10.1039/c1ee01488a

Warren, 2012, Hydrogen-evolution characteristics of Ni-Mo-coated, radial junction, n(+)p-silicon microwire array photocathodes, Energy Environ. Sci., 5, 9653, 10.1039/c2ee23192a

Ding, 2015, Designing efficient solar-driven hydrogen evolution photocathodes using semitransparent MoQ(x)Cl(y) (Q = S, Se) catalysts on Si micropyramids, Adv. Mater., 27, 6511, 10.1002/adma.201501884

Seger, 2012, Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n plus p-silicon photocathode, Angew. Chem. Int. Ed. Engl., 51, 9128, 10.1002/anie.201203585

Benck, 2014, Designing active and stable silicon photocathodes for solar hydrogen production using molybdenum sulfide nanomaterials, Adv. Energy Mater., 4, 1400739, 10.1002/aenm.201400739

Morales-Guio, 2014, Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst, Nat. Commun., 5, 3059, 10.1038/ncomms4059

Morales-Guio, 2015, Photoelectrochemical hydrogen production in alkaline solutions using Cu2O coated with earth-abundant hydrogen evolution catalysts, Angew. Chem. Int. Ed. Engl., 54, 664, 10.1002/anie.201410569

Gao, 2014, Photoelectrochemical hydrogen production on InP nanowire arrays with molybdenum sulfide electrocatalysts, Nano Lett., 14, 3715, 10.1021/nl404540f

Standing, 2015, Efficient water reduction with gallium phosphide nanowires, Nat. Commun., 6, 7824, 10.1038/ncomms8824

Britto, 2016, Molybdenum disulfide as a protection layer and catalyst for gallium indium phosphide solar water splitting photocathodes, J. Phys. Chem. Lett., 7, 2044, 10.1021/acs.jpclett.6b00563

Zhang, 2016, p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production, Energy Environ. Sci., 9, 3113, 10.1039/C6EE02215D

Unold, 2011, Nonconventional (non-silicon-based) photovoltaic materials, Annu. Rev. Mater. Res., 41, 297, 10.1146/annurev-matsci-062910-100437

Caban-Acevedo, 2014, Ionization of high-density deep donor defect states explains the low photovoltage of iron pyrite single crystals, J. Am. Chem. Soc., 136, 17163, 10.1021/ja509142w