Efficient Electrocatalytic N2 Fixation with MXene under Ambient Conditions
Tóm tắt
Từ khóa
Tài liệu tham khảo
Chen, 2018, Beyond fossil fuel-driven nitrogen transformations, Science, 360, eaar6611, 10.1126/science.aar6611
Wang, 2018, Greening ammonia toward the solar ammonia refinery, Joule, 2, 1055, 10.1016/j.joule.2018.04.017
Van der Ham, 2014, Challenges in reduction of dinitrogen by proton and electron transfer, Chem. Soc. Rev., 43, 5183, 10.1039/C4CS00085D
Lide, 2005
Smil, 2004
Appl, 2006
Erisman, 2008, How a century of ammonia synthesis changed the world, Nat. Geosci., 1, 636, 10.1038/ngeo325
Duman, 2016, Steric switching from photochemical to thermal reaction pathways for enhanced efficiency in metal-mediated nitrogen fixation, J. Am. Chem. Soc., 138, 14856, 10.1021/jacs.6b09789
Milton, 2017, Bioelectrochemical Haber-Bosch process: an ammonia-producing H2/N2 fuel cell, Angew. Chem. Int. Ed., 56, 2680, 10.1002/anie.201612500
Chen, 2017, Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy, J. Am. Chem. Soc., 139, 9771, 10.1021/jacs.7b04393
Nazemi, 2018, Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages, Nano Energy, 49, 316, 10.1016/j.nanoen.2018.04.039
Yao, 2018, A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces, J. Am. Chem. Soc., 140, 1496, 10.1021/jacs.7b12101
Lee, 2018, Favoring the unfavored: selective electrochemical nitrogen fixation using a reticular chemistry approach, Sci. Adv., 4, eaar3208, 10.1126/sciadv.aar3208
Lv, 2018, An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions, Angew. Chem. Int. Ed., 57, 6073, 10.1002/anie.201801538
Chalkley, 2018, Fe-mediated nitrogen fixation with a metallocene mediator: exploring pKa effects and demonstrating electrocatalysis, J. Am. Chem. Soc., 140, 6122, 10.1021/jacs.8b02335
Lv, 2018, Defect engineering metal-free polymeric carbon nitride electrocatalyst for effective nitrogen fixation under ambient conditions, Angew. Chem. Int. Ed., 57, 10246, 10.1002/anie.201806386
Chen, 2017, Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst, Angew. Chem. Int. Ed., 56, 2699, 10.1002/anie.201609533
Deng, 2018, Electrocatalytic nitrogen reduction at low temperature, Joule, 2, 846, 10.1016/j.joule.2018.04.014
Kordali, 2000, Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell, Chem. Commun., 17, 1673, 10.1039/b004885m
Ding, 2017, A two-dimensional lamellar membrane: MXene nanosheet stacks, Angew. Chem. Int. Ed., 56, 1825, 10.1002/anie.201609306
Liang, 2015, Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries, Angew. Chem. Int. Ed., 54, 3907, 10.1002/anie.201410174
Lukatskaya, 2013, Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide, Science, 341, 1502, 10.1126/science.1241488
Ma, 2016, Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution, Angew. Chem. Int. Ed., 55, 1138, 10.1002/anie.201509758
Li, 2018, Ultrathin MXene nanosheets with rich fluorine termination groups realizing efficient electrocatalytic hydrogen evolution, Nano Energy, 47, 512, 10.1016/j.nanoen.2018.03.022
Ran, 2017, Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production, Nat. Commun., 8, 13907, 10.1038/ncomms13907
Azofra, 2016, Promising prospects for 2D d2–d4 M3C2 transition metal carbides (MXenes) in N2 capture and conversion into ammonia, Energy Environ. Sci., 9, 2545, 10.1039/C6EE01800A
Mashtalir, 2013, Intercalation and delamination of layered carbides and carbonitrides, Nat. Commun., 4, 1716, 10.1038/ncomms2664
Naguib, 2014, MXenes: a new family of two-dimensional materials, Adv. Mater., 26, 992, 10.1002/adma.201304138
Gao, 2017, 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction, ACS Catal., 7, 494, 10.1021/acscatal.6b02754
Li, 2017, Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes), ACS Nano, 11, 10825, 10.1021/acsnano.7b03738
Ding, 2018, MXene molecular sieving membranes for highly efficient gas separation, Nat. Commun., 9, 155, 10.1038/s41467-017-02529-6
Naguib, 2011, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater., 23, 4248, 10.1002/adma.201102306
Halim, 2016, X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes), Appl. Surf. Sci., 362, 406, 10.1016/j.apsusc.2015.11.089
Hu, 2016, High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical Raman spectroscopy investigation, ACS Nano, 10, 11344, 10.1021/acsnano.6b06597
Kugler, 2015, Galvanic deposition of Rh and Ru on randomly structured Ti felts for the electrochemical NH3 synthesis, Phys. Chem. Chem. Phys., 17, 3768, 10.1039/C4CP05501B
Bao, 2017, Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle, Adv. Mater., 29, 1604799, 10.1002/adma.201604799
Yu, 2018, Boron-doped graphene for electrocatalytic N2 reduction, Joule, 2, 1610, 10.1016/j.joule.2018.06.007
Ozin, 2018, Ambient electro-synthesis of ammonia-electrode porosity and composition engineering, Angew. Chem. Int. Ed., 57, 12360, 10.1002/anie.201805514
Segall, 2002, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys. Condens. Matter, 14, 2717, 10.1088/0953-8984/14/11/301
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865