Efficient 5-aminolevulinic acid production through reconstructing the metabolic pathway in SDH-deficient Yarrowia lipolytica
Tài liệu tham khảo
Kang, 2017, Recent advances in production of 5-aminolevulinic acid using biological strategies, World J. Microbiol. Biotechnol., 33, 200, 10.1007/s11274-017-2366-7
Layer, 1868, Heme biosynthesis in prokaryotes, Biochim. Biophys. Acta Mol. Cell. Res., 2021
Kang, 2012, Recent advances in microbial production of δ-aminolevulinic acid and vitamin B12, Biotechnol. Adv., 30, 1533, 10.1016/j.biotechadv.2012.04.003
Koizumi, 2016, Recent advances in photodynamic diagnosis of gastric cancer using 5-aminolevulinic acid, World J. Gastroenterol., 22, 1289, 10.3748/wjg.v22.i3.1289
Ao, 2018, 5-aminolevulinic acid photodynamic therapy for anal canal condyloma acuminatum: a series of 19 cases and literature review, Photo Photodyn. Ther., 23, 230, 10.1016/j.pdpdt.2018.06.022
Kang, 2011, Engineering Escherichia coli for efficient production of 5-aminolevulinic acid from glucose, Metab. Eng., 13, 492, 10.1016/j.ymben.2011.05.003
Zhang, 2020, Metabolic engineering of an auto-regulated Corynebacterium glutamicum chassis for biosynthesis of 5-aminolevulinic acid, Bioresour. Technol., 318, 10.1016/j.biortech.2020.124064
Miscevic, 2021, Strain engineering for high-level 5-aminolevulinic acid production in Escherichia coli, Biotechnol. Bioeng., 118, 30, 10.1002/bit.27547
Kars, 2013, Biohydrogen and 5-aminolevulinic acid production from waste barley by Rhodobacter sphaeroides O.U.001 in a biorefinery concept, Int. J. Hydrog. Energy, 38, 5573, 10.1016/j.ijhydene.2013.03.013
Utsunomiya, 2003, Stimulation of porphyrin production by application of an external magnetic field to a photosynthetic bacterium, Rhodobacter sphaeroides, J. Biosci. Bioeng., 95, 401, 10.1016/S1389-1723(03)80075-0
Cui, 2019, Stable and efficient biosynthesis of 5-aminolevulinic acid using plasmid-free Escherichia coli, J. Agric. Food Chem., 67, 1478, 10.1021/acs.jafc.8b06496
Chen, 2020, Efficient bioproduction of 5-aminolevulinic acid, a promising biostimulant and nutrient, from renewable bioresources by engineered Corynebacterium glutamicum, Biotechnol. Biofuels, 13, 41, 10.1186/s13068-020-01685-0
Miller, 2019, Yarrowia lipolytica: more than an oleaginous workhorse, Appl. Microbiol. Biotechnol., 103, 9251, 10.1007/s00253-019-10200-x
Groenewald, 2014, Yarrowia lipolytica: safety assessment of an oleaginous yeast with a great industrial potential, Crit. Rev. Microbiol, 40, 187, 10.3109/1040841X.2013.770386
Cui, 2017, Engineering of unconventional yeast Yarrowia lipolytica for efficient succinic acid production from glycerol at low pH, Metab. Eng., 42, 126, 10.1016/j.ymben.2017.06.007
Bilal, 2020, Yarrowia lipolytica as an emerging biotechnological chassis for functional sugars biosynthesis, Crit. Rev. Food Sci. Nutr., 61, 535, 10.1080/10408398.2020.1739000
Zeng, 2018, Recent advances in metabolic engineering of Yarrowia lipolytica for lipid overproduction, Eur. J. Lipid Sci. Technol., 120, 10.1002/ejlt.201700352
Fickers, 2020, Sugar alcohols and organic acids synthesis in Yarrowia lipolytica: where are we?, Microorganisms, 8, 10.3390/microorganisms8040574
Zhao, 2019, Enhanced itaconic acid production in Yarrowia lipolytica via heterologous expression of a mitochondrial transporter MTT, Appl. Microbiol. Biotechnol., 103, 2181, 10.1007/s00253-019-09627-z
Yuzbasheva, 2019, The mitochondrial citrate carrier in Yarrowia lipolytica: Its identification, characterization and functional significance for the production of citric acid, Metab. Eng., 54, 264, 10.1016/j.ymben.2019.05.002
Gao, 2016, Robust succinic acid production from crude glycerol using engineered Yarrowia lipolytica, Biotechnol. Biofuels, 9, 179, 10.1186/s13068-016-0597-8
Yang, 2017, Restoring of glucose metabolism of engineered Yarrowia lipolytica for succinic acid production via a simple and efficient adaptive evolution strategy, J. Agric. Food Chem., 65, 4133, 10.1021/acs.jafc.7b00519
Gibson, 2009, Enzymatic assembly of DNA molecules up to several hundred kilobases, Nat. Methods, 6, 343, 10.1038/nmeth.1318
Cui, 2019, Homology-independent genome integration enables rapid library construction for enzyme expression and pathway optimization in Yarrowia lipolytica, Biotechnol. Bioeng., 116, 354, 10.1002/bit.26863
Cui, 2021, A CRISPR/Cas9-mediated, homology-independent tool developed for targeted genome integration in Yarrowia lipolytica, Appl. Environ. Microbiol., 87, 10.1128/AEM.02666-20
Chen, 1997, One-step transformation of the dimorphic yeast Yarrowia lipolytica, Appl. Microbiol. Biotechnol., 48, 232, 10.1007/s002530051043
Burnham, 1970, [14] δ-Aminolevulinic acid synthase (Rhodopseudomonas spheroides), Methods Enzymol., 17, 195, 10.1016/0076-6879(71)17179-0
Hara, 2019, 5-Aminolevulinic acid fermentation using engineered Saccharomyces cerevisiae, Microb. Cell. Fact., 18, 194, 10.1186/s12934-019-1242-6
Franken, 2011, Heme biosynthesis and its regulation: towards understanding and improvement of heme biosynthesis in filamentous fungi, Appl. Microbiol. Biotechnol., 91, 447, 10.1007/s00253-011-3391-3
González-Domínguez, 2001, Haem regulation of the mitochondrial import of the Kluyveromyces lactis 5-aminolaevulinate synthase: an organelle approach, Yeast, 18, 41, 10.1002/1097-0061(200101)18:1<41::AID-YEA654>3.0.CO;2-E
Ramzi, 2015, 5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway, Enzym. Microb. Technol., 81, 1, 10.1016/j.enzmictec.2015.07.004
Yu, 2015, Engineering Corynebacterium glutamicum to produce 5-aminolevulinic acid from glucose, Microb. Cell. Fact., 14, 183, 10.1186/s12934-015-0364-8
Yu, 2018, Exploring succinic acid production by engineered Yarrowia lipolytica strains using glucose at low pH, Biochem. Eng. J., 139, 51, 10.1016/j.bej.2018.08.001
Zhang, 2020, Tuning the binding affinity of heme-responsive biosensor for precise and dynamic pathway regulation, iScience, 23
Lian, 2018, Recent advances in metabolic engineering of Saccharomyces cerevisiae: new tools and their applications, Metab. Eng., 50, 85, 10.1016/j.ymben.2018.04.011
Yu, 2018, Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acid-derived chemicals, Nat. Commun., 9
Sun, 2020, Non-conventional hosts for the production of fuels and chemicals, Curr. Opin. Chem. Biol., 59, 15, 10.1016/j.cbpa.2020.03.004
Mao, 2020, Efficient solid-state fermentation for the production of 5-aminolevulinic acid enriched feed using recombinant Saccharomyces cerevisiae, J. Biotechnol., 322, 29, 10.1016/j.jbiotec.2020.06.001