Effects of water and temperature variations on deformation of limestone aggregates, cement paste, mortar and High Performance Concrete (HPC)

Cement and Concrete Composites - Tập 71 - Trang 131-143 - 2016
H. Cagnon1, T. Vidal1, A. Sellier1, C. Soula1, X. Bourbon2, G. Camps2
1Université de Toulouse, UPS, INSA, LMDC (Laboratoire Matériaux et Durabilité des Constructions), 135, avenue de Rangueil, F-31 077 Toulouse Cedex 04, France
2Agence Nationale pour la gestion des Déchets Radioactifs, Direction Scientifique/Services Colis, Matériaux, Parc de la croix Blanche 1-7, rue Jean Monnet, 92 298, Châtenay–Malabry Cedex, France

Tài liệu tham khảo

Ladaoui, 2011, Effect of a temperature change from 20 to 50°C on the basic creep of HPC and HPFRC, Mater. Struct., 44, 1629, 10.1617/s11527-011-9723-z Ladaoui, 2013, Analysis of interactions between damage and basic creep of HPC and HPFRC heated between 20 and 80°C, Mater. Struct., 46, 13, 10.1617/s11527-012-9879-1 Vidal, 2015, Effect of temperature on the basic creep of high-performance concretes heated between 20 and 80°C, J. Mater. Civ. Eng., 27, 10.1061/(ASCE)MT.1943-5533.0001063 Browne, 1967, Properties of concrete in reactor vessels, 11 Hannant, 1967, Strain behaviour of concrete up to 95°C under compressive stresses, 57 G. J. Kommendant, M. Polivka, and D. Pirtz. Study of concrete properties for prestressed concrete reactor vessels. Final Rep.-Part II, Creep and Strength Characteristics of Concrete at Elevated Temperatures, Rep. 1976, No. UCSESM 76-3 Prepared for General Atomic Company, Dept. of Civil Engineering, Univ. of California, Berkeley, CA. J. E. McDonald. Time-dependent deformation of concrete under multiaxial stress conditions. Technical Rep. C-75–4, Concrete Laboratory, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS, Oak Ridge National Laboratory, Oak Ridge, TN, Union Carbide Corporation for the U.S. Energy Research and Development Administration. 1975, OSTI Identifier: 4155491. Nasser, 1965, Creep of concrete at elevated temperatures, ACI J. Proc., 62, 1567 Nasser, 1981, Creep of concrete at temperatures from 70 to 450F under atmospheric pressure, ACI J., 78, 147 York, 1970 Zielinski, 1973, The influence of moisture content on the creep of concrete at elevated temperatures, 1 Piasta, 1984, Heat deformations of cement paste phases and the microstructure of cement paste, Mater. Struct., 17, 415, 10.1007/BF02473981 Zeng, 2012, Effect of porosity on thermal expansion coefficient of cement pastes and mortars, Constr. Build. Mater., 28, 468, 10.1016/j.conbuildmat.2011.09.010 Uygunoğluet, 2009, Thermal expansion of self-consolidating normal and lightweight aggregate concrete at elevated temperature, Constr. Build. Mater., 23, 3063, 10.1016/j.conbuildmat.2009.04.004 Xing, 2011, Influence of the nature of aggregates on the behaviour of concrete subjected to elevated temperature, Cem. Concr. Res., 41, 392, 10.1016/j.cemconres.2011.01.005 Le, 2010, Effect of aggregates morphology on the THM behaviour concrete at high temperatures, 978 Johnson, 1944, Thermal expansion of concrete aggregate materials, Part Res. Natl. Bureau Stand., 32, 101, 10.6028/jres.032.002 Wong, 1979, Thermal expansion of rocks: some measurements at high pressure, Tectonophysics, 57, 95, 10.1016/0040-1951(79)90143-4 Heuze, 1983, High-temperature mechanical, physical and Thermal properties of granitic rocks – a review, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 20, 3, 10.1016/0148-9062(83)91609-1 Bažant, 1996, Concrete at High Temperatures: Materials Properties and Mathematical Models, 412 Shui, 2010, Effects of mineral admixtures on the thermal expansion properties of hardened cement paste, Constr. Build. Mater., 24, 1761, 10.1016/j.conbuildmat.2010.02.012 Cruz, 1980, Thermal expansion of Portland cement paste, mortar and concrete at high temperatures, Fire Mater., 4, 66, 10.1002/fam.810040203 Valenza, 2005, Evidence of anomalous thermal expansion of water in cement paste, Cem. Concr. Res., 35, 57, 10.1016/j.cemconres.2004.08.022 Loser, 2010, A volumetric technique for measuring the coefficient of thermal expansion of hardening cement paste and mortar, Cem. Concr. Res., 40, 1138, 10.1016/j.cemconres.2010.03.021 Sellevold, 2006, Coefficient of thermal expansion of cement paste and concrete: mechanisms of moisture interaction, Mater. Struct., 39, 809, 10.1617/s11527-006-9086-z Bažant, 1970, Delayed thermal dilatations of cement paste and concrete due to mass transport, Nucl. Eng. Des., 14, 308, 10.1016/0029-5493(70)90108-1 Chen, 1995, Effect of polymer addition on the thermal stability and thermal expansion of cement, Cem. Concr. Res., 25, 465, 10.1016/0008-8846(95)00033-9 Ghabezloo, 2010, Effect of porosity on the thermal expansion coefficient: a discussion of the paper ‘Effects of mineral admixtures on the thermal expansion properties of hardened cement paste’ by Shui Z.H., Zhang R., Chen W., Xuan D, Constr. Build. Mater., 24, 1796, 10.1016/j.conbuildmat.2010.03.006 Wyrzykowskiet, 2013, Moisture dependence of thermal expansion in cement-based materials at early ages, Cem. Concr. Res., 53, 25, 10.1016/j.cemconres.2013.05.016 Grasley, 2007, Thermal dilation and internal relative humidity of hardened cement paste, Mater. Struct., 40, 311, 10.1617/s11527-006-9108-x Ghabezloo, 2011, Micromechanics analysis of thermal expansion and thermal pressurization of a hardened cement paste, Cem. Concr. Res., 41, 520, 10.1016/j.cemconres.2011.01.023 Chen, 2009, Effect of heat-treatment and hydrostatic loading upon the poro-elastic properties of a mortar, Cem. Concr. Res., 39, 195, 10.1016/j.cemconres.2008.12.001 Maruyama, 2012, Effect of water-retaining lightweight aggregate on the reduction of thermal expansion coefficient in mortar subject to temperature histories, Cem. Concr. Compos., 34, 1124, 10.1016/j.cemconcomp.2012.08.003 Demirboǧa, 2003, Influence of mineral admixtures on thermal conductivity and compressive strength of mortar, Energy Build., 35, 189, 10.1016/S0378-7788(02)00052-X Menou, 2006, Residual fracture energy of cement paste, mortar and concrete subject to high temperature, Theor. Appl. Fract. Mech., 45, 64, 10.1016/j.tafmec.2005.11.007 Kada, 2002, Determination of the coefficient of thermal expansion of high performance concrete from initial setting, Mater. Struct., 35, 35, 10.1007/BF02482088 Emanuel, 1977, Prediction of the thermal coefficient of expansion of concrete, ACI J. Proc., 74, 149 Stillingeret, 1974, Improved simulation of liquid water by molecular dynamics, J. Chem. Phys., 60, 1545, 10.1063/1.1681229 Jönsson, 2004, Onset of cohesion in cement paste, Langmuir, 20, 1545, 10.1021/la0498760 Hasnain, 1998, Review on sustainable thermal energy storage technologies, Part I: heat storage materials and techniques, Energy Convers. Manag., 39, 1127, 10.1016/S0196-8904(98)00025-9 Hasnain, 1998, Review on sustainable thermal energy storage technologies, Part II: cool thermal storage, Energy Convers. Manag., 39, 1139, 10.1016/S0196-8904(98)00024-7 Turner, 1988, Studies to link the basic radiation physics and chemistry of liquid water, Int. J. Radiat. App. Instrum. Part C. Radiat. Phys. Chem., 32, 503 Hover, 2011, The influence of water on the performance of concrete, Constr. Build. Mater., 25, 3003, 10.1016/j.conbuildmat.2011.01.010 Cabane, 2005, The physics of liquid water, Geoscience, 337, 159, 10.1016/j.crte.2004.09.018 Hepler, 1969, Thermal expansion and structure in water and aqueous solutions, Can. J. Chem., 47, 4613, 10.1139/v69-762 Lagier, 2011, Numerical strategies for prediction of drying cracks in heterogeneous materials: comparison upon experimental results, Eng. Struct., 33, 920, 10.1016/j.engstruct.2010.12.013 BS EN 1992-1–2: 2004 Design of concrete structures. General rules. Structural fire design. Powers, 1965, The mechanisms of shrinkage and reversible creep of hardened cement paste, 319 Powers, 1968, The thermodynamics of volume change and creep, Mater. Struct., 1, 487 Parrott, 1982 Bangham, 1937, Adsorption and the wettability of solid surfaces, Trans. Faraday Soc., 33, 1459, 10.1039/tf9373301459 Bangham, 1938, Swelling of charcoal. Proceedings of the royal society of London. Series A, Math. Phys. Sci., 166, 572 Schwartzentruber, 2000, Method of the concrete equivalent mortar (CEM)-a new tool to design concrete admixture, Mater. Struct., 33, 475, 10.1007/BF02480524 Bloom, 1995, Free and restrained shrinkage of normal and high strength concretes, ACI Mater. J., 92, 211 Swamy, 1979, Influence of fiber reinforcement on restrained shrinkage and cracking, J. Proc., 76, 443 Banthia, 1996, Restrained shrinkage cracking in fiber reinforced concrete: a novel test technique, Cem. Concr. Res., 26, 9, 10.1016/0008-8846(95)00186-7 RILEM CPC8Recommendations RILEM CPC8, Modulus of elasticity of concrete in compression-RILEM CPC8. Mater. Struct. Volume 6, Issue 30, pp 507–512. DOI: 10.1617/2351580117.012. NF P18-459, 2010 Sabri, 1982, Immediate and delayed thermal expansion of hardened cement paste, Cem. Concr. Res., 12, 199, 10.1016/0008-8846(82)90007-2 Ai, 2001, Thermal expansion kinetics: method to measure permeability of cementitious materials: II, application to hardened cement pastes, J. Am. Ceram. Soc., 84, 385, 10.1111/j.1151-2916.2001.tb00666.x Hobbs, 1971, The dependence of the bulk modulus, Young’s modulus, creep, shrinkage and thermal expansion of concrete upon aggregate volume concentration, Mater. Struct., 4, 107