Effects of voluntary exercise on structure and function of cortical microvasculature

Journal of Cerebral Blood Flow and Metabolism - Tập 37 Số 3 - Trang 1046-1059 - 2017
Adrienne Dorr1, Lynsie A.M. Thomason1, Margaret M. Koletar1, Illsung L. Joo2,1, Joe Steinman2,3, Lindsay S. Cahill3, John G. Sled2,3, Bojana Stefanovic2,1
1Sunnybrook Research Institute, Toronto, Canada
2Department of Medical Biophysics, University of Toronto, Toronto, Canada
3Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Canada

Tóm tắt

Aerobic activity has been shown highly beneficial to brain health, yet much uncertainty still surrounds the effects of exercise on the functioning of cerebral microvasculature. This study used two-photon fluorescence microscopy to examine cerebral hemodynamic alterations as well as accompanying geometric changes in the cortical microvascular network following five weeks of voluntary exercise in transgenic mice endogenously expressing tdTomato in vascular endothelial cells to allow visualization of microvessels irrespective of their perfusion levels. We found a diminished microvascular response to a hypercapnic challenge (10% FiCO2) in running mice when compared to that in nonrunning controls despite commensurate increases in transcutaneous CO2 tension. The flow increase to hypercapnia in runners was 70% lower than that in nonrunners (p = 0.0070) and the runners’ arteriolar red blood cell speed changed by only half the amount seen in nonrunners (p = 0.0085). No changes were seen in resting hemodynamics or in the systemic physiological parameters measured. Although a few unperfused new vessels were observed on visual inspection, running did not produce significant morphological differences in the microvascular morphometric parameters, quantified following semiautomated tracking of the microvascular networks. We propose that voluntary running led to increased cortical microvascular efficiency and desensitization to CO2 elevation.

Từ khóa


Tài liệu tham khảo

10.1073/pnas.0611721104

Colcombe SJ, 2006, J Gerontol, 61, 5, 10.1093/gerona/61.11.1166

10.1016/j.neurobiolaging.2008.11.002

10.1155/2012/269815

10.1007/s13670-014-0101-x

10.1152/advan.00101.2014

10.1152/ajpregu.00208.2003

10.1016/j.bbr.2010.12.030

10.1523/JNEUROSCI.0496-05.2005

10.1523/JNEUROSCI.1731-05.2005

10.1016/j.brainres.2015.07.009

10.1016/j.neuroscience.2010.03.003

10.1073/pnas.96.23.13427

10.1001/archneurol.2009.307

10.7326/0003-4819-144-2-200601170-00004

10.1093/aje/kwi092

10.1016/j.nbd.2009.06.002

10.2353/ajpath.2006.051107

10.1016/j.nbd.2011.03.007

10.1016/j.cell.2005.01.015

10.1016/j.brainres.2014.08.032

10.1016/j.neulet.2003.08.039

10.1007/s00401-004-0943-y

10.1002/ana.10722

10.1161/01.RES.0000250175.14861.77

10.1113/JP271081

10.1161/HYPERTENSIONAHA.109.138917

10.1113/jphysiol.2008.158279

10.1002/jmri.24090

10.1161/STROKEAHA.113.002589

10.1016/j.neurobiolaging.2014.08.018

10.1007/s11357-012-9414-x

10.1152/ajpheart.00177.2014

10.1016/S0306-4522(02)00664-4

10.1016/j.brainres.2007.09.081

10.1113/jphysiol.2009.169771

Chalimoniuk M, 2015, J Physiol Pharmacol, 4, 539

10.1152/ajpheart.00624.2012

10.1016/j.brainres.2011.03.005

10.1016/S0024-3205(01)01192-4

10.1089/ars.2008.2027

10.3174/ajnr.A1695

10.1016/j.neuroimage.2015.03.036

10.1016/j.neuroscience.2012.12.046

10.1038/jcbfm.1992.14

10.1101/lm.43402

10.1111/j.1460-9568.2003.03041.x

10.1002/hipo.20543

10.1002/hipo.20545

10.1016/S0006-8993(02)02239-4

10.2174/156720206775541787

10.1073/pnas.87.14.5568

10.1073/pnas.0400337101

10.1101/lm.2283011

10.1038/jcbfm.2012.86

10.1016/j.neuroimage.2006.03.033

10.1371/journal.pbio.1000412

10.1002/1526-968X(200010)28:2<75::AID-GENE50>3.0.CO;2-S

10.1093/brain/aws243

10.1016/j.neuroimage.2013.01.011

10.1002/ar.1090780204

10.1016/0361-9230(81)90007-1

10.1038/jcbfm.2010.158

10.1007/978-1-4939-0620-8_28

10.1152/ajpheart.00417.2011

10.1152/ajpheart.00510.2010

10.1016/j.neuroimage.2014.03.044

10.1016/j.media.2004.06.017

10.1016/j.cmpb.2009.12.005

10.1016/j.mri.2010.08.009

10.1038/sj.jcbfm.9600590

10.1371/journal.pbio.0040022

10.1007/978-1-4419-0318-1

10.1002/9780470515075.ch13

10.1161/01.RES.76.1.120

10.1161/01.RES.75.1.55

10.1152/ajpheart.1995.268.6.H2202

10.1038/jcbfm.2012.152

10.1016/j.neuroimage.2007.10.054

Yoshihara K, 2009, Physiol Meas, 20, 293

10.1016/j.neuroimage.2013.10.036

10.1097/01.WCB.0000126564.89011.11

10.1093/brain/awv023

10.1111/j.1365-2990.2010.01139.x

10.1111/j.1749-6632.1997.tb48464.x

10.1016/j.neuroimage.2012.04.009

Deming WE, 1943, Statistical adjustment of data. 1985th Dover Publications edition

10.1097/JES.0b013e3182553430

10.1161/01.CIR.101.25.2896

10.12659/MSM.893935

10.1073/pnas.0400266101

10.1523/JNEUROSCI.21-05-01628.2001

10.1523/JNEUROSCI.20-08-02926.2000

10.1111/j.1460-9568.2004.03720.x

10.1016/0006-8993(96)00273-9

10.1016/j.tins.2007.06.011

10.1291/hypres.27.947

10.1093/eurheartj/eht544

10.1371/journal.pbio.1002279

10.1161/CIRCULATIONAHA.110.939959

Cipolla M, 2009, The cerebral circulation, 29

10.1038/jcbfm.1995.78

10.1097/00000539-200006000-00021

10.1016/j.neuroimage.2010.03.060

10.1097/01.WCB.0000054755.93668.20

10.1152/jappl.1991.70.3.1168

10.1152/jappl.2001.90.5.1729

10.1007/s00421-013-2695-7

10.1113/expphysiol.2011.059261

10.1038/jcbfm.2015.107

10.1016/j.neuroimage.2011.06.030

10.1161/01.STR.0000163080.82766.eb

10.1182/blood-2009-05-223859

10.1016/j.brainres.2012.12.036

10.1371/journal.pone.0044652

10.1371/journal.pone.0077764

10.1097/01.wnr.0000127463.10147.e7

Ludyga S, Gronwald T and Hottenrott K. The athlete’s brain: cross-sectional evidence for neural efficiency during cycling exercise. Neural Plast 2016; Article ID 4583674.

10.1113/jphysiol.2005.091355

10.1124/pr.108.000547

10.3171/jns.1996.84.1.0071

10.1096/fj.99-0896rev

De Kimpe SJ, 1994, J Pharmacol Exp Ther, 268, 910