Tác động của hình dạng thiết bị tạo xoáy, trường điện từ nghiêng và dòng nanobuid đối lưu hỗn hợp lên hiệu suất nhiệt của bước nghiêng theo chiều tiến vi mô

Journal of Central South University - Tập 28 - Trang 3310-3326 - 2021
E. Jalil1, G. R. Molaeimanesh1
1Research Laboratory of Automotive Fluids and Structures Analysis, School of Automotive Engineering, Iran University of Science and Technology, Tehran, Iran

Tóm tắt

Nghiên cứu này đã khảo sát một cách định lượng các tác động kết hợp của các hình dạng thiết bị tạo xoáy khác nhau, dung dịch nanofluid Al2O3/nước và trường từ nghiêng đối với hành vi nhiệt của bước nghiêng theo chiều tiến vi mô (MSIFFS). Chiều dài và chiều cao của tất cả các thiết bị tạo xoáy được xem xét là 0.0979 và 0.5 mm, tương ứng, và số Reynolds thay đổi từ 5000 đến 10000. Để so sánh đồng thời hệ số ma sát bề mặt (SFC) và tỷ lệ truyền nhiệt (HTR), tham số hiệu suất nhiệt (TPF) đã được lựa chọn. Kết quả cho thấy rằng tất cả các trường hợp xem xét được trang bị thiết bị tạo xoáy đều có lợi về mặt nhiệt động so với MSIFFS đơn giản. Bên cạnh đó, việc sử dụng dung dịch nanofluid Al2O3/nước với các tỷ lệ thể tích hạt (NVF) khác nhau trong sự hiện diện của trường điện từ nghiêng (IMF) đã làm tăng HTR. Khi NVF tăng từ 1% đến 4% và mật độ từ trường (MFD) tăng từ 0.002 đến 0.008 T, HTR và do đó TPF cải thiện. Kết quả tốt nhất được quan sát thấy cho MSIFFS được trang bị thiết bị tạo xoáy hình thang với 4% Al2O3 trong sự hiện diện của IMF (B=0.008 T). TPF tăng với sự gia tăng số Reynolds (Re), và giá trị tối đa của nó là 5.2366 cho MSIFFS được trang bị thiết bị tạo xoáy hình thang với 4% Al2O3, B=0.008 T, và Re=10000.

Từ khóa

#thiết bị tạo xoáy #trường điện từ nghiêng #dung dịch nanofluid #hiệu suất nhiệt #bước nghiêng theo chiều tiến vi mô

Tài liệu tham khảo

RAMESH K, DEVAKAR M. Peristaltic transport of MHD Williamson fluid in an inclined asymmetric channel through porous medium with heat transfer [J]. Journal of Central South University, 2015, 22(8): 3189–3201. DOI: https://doi.org/10.1007/s11771-015-2856-4. FARHANGMEHR V, MOGHADASI H, ASIAEI S. A nanofluid MHD flow with heat and mass transfers over a sheet by nonlinear boundary conditions: Heat and mass transfers enhancement [J]. Journal of Central South University, 2019, 26(5): 1205–1217. DOI: https://doi.org/10.1007/s11771-019-4081-z. SADEGHI M S, DOGONCHI A S, GHODRAT M, CHAMKHA A J, ALHUMADE H, KARIMI N. Natural convection of CuO-water nanofluid in a conventional oil/water separator cavity: Application to combined-cycle power plants [J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 124: 307–319. DOI: https://doi.org/10.1016/j.jtice.2021.03.031. DOGONCHI A S, MISHRA S R, KARIMI N, CHAMKHA A J, ALHUMADE H. Interaction of fusion temperature on the magnetic free convection of nano-encapsulated phase change materials within two rectangular fins-equipped porous enclosure [J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 124: 327–340. DOI: https://doi.org/10.1016/j.jtice.2021.03.010. SADEGHI M S, TAYEBI T, DOGONCHI A S, NAYAK M K, WAQAS M. Analysis of thermal behavior of magnetic buoyancy-driven flow in ferrofluid-filled wavy enclosure furnished with two circular cylinders [J]. International Communications in Heat and Mass Transfer, 2021, 120: 104951. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2020.104951. SEYYEDI S M, DOGONCHI A S, HASHEMI-TILEHNOEE M, WAQAS M, GANJI D D. Investigation of entropy generation in a square inclined cavity using control volume finite element method with aided quadratic Lagrange interpolation functions [J]. International Communications in Heat and Mass Transfer, 2020, 110: 104398. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2019.104398. SADEGHI M S, TAYEBI T, DOGONCHI A S, ARMAGHANI T, TALEBIZADEHSARDARI P. Analysis of hydrothermal characteristics of magnetic Al2O3-H2O nanofluid within a novel wavy enclosure during natural convection process considering internal heat generation [J]. Mathematical Methods in the Applied Sciences, 2020: 1–13. DOI: https://doi.org/10.1002/mma.6520. SIAVASHI M, KARIMI K, XIONG Qin-gang, DORANEHGARD M H. Numerical analysis of mixed convection of two-phase non-Newtonian nanofluid flow inside a partially porous square enclosure with a rotating cylinder [J]. Journal of Thermal Analysis and Calorimetry, 2019, 137(1): 267–287. DOI: https://doi.org/10.1007/s10973-018-7945-9. DOGONCHI A S, WAQAS M, SEYYEDI S M, HASHEMI-TILEHNOEE M, GANJI D D. A modified Fourier approach for analysis of nanofluid heat generation within a semicircular enclosure subjected to MFD viscosity [J]. International Communications in Heat and Mass Transfer, 2020, 111: 104430. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2019.104430. LEE P S, GARIMELLA S V, LIU Dong. Investigation of heat transfer in rectangular microchannels [J]. International Journal of Heat and Mass Transfer, 2005, 48(9): 1688–1704. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2004.11.019. SUI Y, TEO C J, LEE P S, CHEW Y T, SHU C. Fluid flow and heat transfer in wavy microchannels [J]. International Journal of Heat and Mass Transfer, 2010, 53(13–14): 2760–2772. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.022. YANG Wei-hua, ZHANG Jing-zhou, CHENG Hui-er. The study of flow characteristics of curved microchannel [J]. Applied Thermal Engineering, 2005, 25(13): 1894–1907. DOI: https://doi.org/10.1016/j.applthermaleng.2004.12.001. MOHAMMED H A, GUNNASEGARAN P, SHUAIB N H. Influence of channel shape on the thermal and hydraulic performance of microchannel heat sink [J]. International Communications in Heat and Mass Transfer, 2011, 38(4): 474–480. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2010.12.031. GUNNASEGARAN P, MOHAMMED H A, SHUAIB N H, SAIDUR R. The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes [J]. International Communications in Heat and Mass Transfer, 2010, 37(8): 1078–1086. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2010.06.014. MOHAMMED H A, GUNNASEGARAN P, SHUAIB N H. Numerical simulation of heat transfer enhancement in wavy microchannel heat sink [J]. International Communications in Heat and Mass Transfer, 2011, 38(1): 63–68. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2010.09.012. KHERBEET A S, MOHAMMED H A, AHMED H E, SALMAN B H, ALAWI O A, SAFAEI M R, KHAZAAL M T. Mixed convection nanofluid flow over microscale forward-facing step—Effect of inclination and step heights [J]. International Communications in Heat and Mass Transfer, 2016, 78: 145–154. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2016.08.016. HAMDAN M A, AL-ASSAF A H, AL-NIMR M A. The effect of slip velocity and temperature jump on the hydrodynamic and thermal behaviors of MHD forced convection flows in horizontal microchannels [J]. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2016, 40(2): 95–103. DOI: https://doi.org/10.1007/s40997-016-0004-x. SHIRINY A, BAYAREH M, AHMADI NADOOSHAN A, BAHRAMI D. Forced convection heat transfer of water/FMWCNT nanofluid in a microchannel with triangular ribs [J]. SN Applied Sciences, 2019, 1: 1631. DOI: https://doi.org/10.1007/s42452-019-1678-7. SHIRINY A, BAYAREH M, AHMADI NADOOSHAN A. Nanofluid flow in a microchannel with inclined cross-flow injection [J]. SN Applied Sciences, 2019, 1: 1015. DOI: https://doi.org/10.1007/s42452-019-1050-y. ANOOP K, SADR R, YU J, KANG S, JEON S, BANERJEE D. Experimental study of forced convective heat transfer of nanofluids in a microchannel [J]. International Communications in Heat and Mass Transfer, 2012, 39(9): 1325–1330. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2012.07.023. MALVANDI A, GANJI D D. Brownian motion and thermophoresis effects on slip flow of alumina/water nanofluid inside a circular microchannel in the presence of a magnetic field [J]. International Journal of Thermal Sciences, 2014, 84: 196–206. DOI: https://doi.org/10.1016/j.ijthermalsci.2014.05.013. AFRAND M, KARIMIPOUR A, NADOOSHAN A A, AKBARI M. The variations of heat transfer and slip velocity of FMWNT-water nano-fluid along the micro-channel in the lack and presence of a magnetic field [J]. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 84: 474–481. DOI: https://doi.org/10.1016/j.physe.2016.07.013. ALTUN A H, GÜRDAL M, BERBER A. Effects of sinusoidal strip element with different amplitudes on heat transfer and flow characteristics of circular channels [J]. Heat Transfer Research, 2019, 50(6): 605–616. DOI: https://doi.org/10.1615/heattransres.2018025038. IBRAHIM M M, ESSA M A, MOSTAFA N H. A computational study of heat transfer analysis for a circular tube with conical ring turbulators [J]. International Journal of Thermal Sciences, 2019, 137: 138–160. DOI: https://doi.org/10.1016/j.ijthermalsci.2018.10.028. ALTUN A H, GURDAL M, BERBER A. Effects of sinusoidal turbulator in cylindrical channel on heat transfer and flow characteristics [J]. Maejo International Journal of Science and Technology, 2020, 14(1): 27–42. KAOOD A, HASSAN M A. Thermo-hydraulic performance of nanofluids flow in various internally corrugated tubes [J]. Chemical Engineering and Processing-Process Intensification, 2020, 154: 108043. DOI: https://doi.org/10.1016/j.cep.2020.108043. GHOLAMALIPOUR P, SIAVASHI M, DORANEHGARD M H. Eccentricity effects of heat source inside a porous annulus on the natural convection heat transfer and entropy generation of Cu-water nanofluid [J]. International Communications in Heat and Mass Transfer, 2019, 109: 104367. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2019.104367. MOOSAVI R, JALIL E, LIN Cheng-xian. Turbulent forced convection nanofluid flow over an inclined forward-facing step [J]. Heat Transfer Research, 2020, 51(13): 1221–1240. DOI: https://doi.org/10.1615/heattransres.2020034082. TAIVASSALO V, KALLIO S. On the mixture model for multiphase flow [M]. Espoo: VTT Publ, 1996. SCHILLER L. A drag coefficient correlation [J]. Zeit. Ver. Deutsch. Ing., 1935, 77: 318–320. TOGUN H, AHMADI G, ABDULRAZZAQ T, SHKARAH A J, KAZI S N, BADARUDIN A, SAFAEI M R. Thermal performance of nanofluid in ducts with double forward-facing steps [J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 47: 28–42. DOI: https://doi.org/10.1016/j.jtice.2014.10.009. BIANCO V, MANCA O, NARDINI S. Numerical investigation on nanofluids turbulent convection heat transfer inside a circular tube [J]. International Journal of Thermal Sciences, 2011, 50(3): 341–349. DOI: https://doi.org/10.1016/j.ijthermalsci.2010.03.008. GANDJALIKHAN NASSAB S A, MOOSAVI R, HOSSEINI SARVARI S M. Turbulent forced convection flow adjacent to inclined forward step in a duct [J]. International Journal of Thermal Sciences, 2009, 48(7): 1319–1326. DOI: https://doi.org/10.1016/j.ijthermalsci.2008.10.003. MOHAMMADI B, PIRONNEAU O. Analysis of the K-Epsilon turbulence model [M]. New Jersey: Wiley, 1994. VAJJHA R S, DAS D K. Experimental determination of thermal conductivity of three nanofluids and development of new correlations [J]. International Journal of Heat and Mass Transfer, 2009, 52(21, 22): 4675–4682. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.027. PAK B C, CHO Y I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles [J]. Experimental Heat Transfer, 1998, 11(2): 151–170. DOI: https://doi.org/10.1080/08916159808946559. ACHARD F, MAXWELL J C. A treatise on electricity and magnetism [M]// Landmark Writings in Western Mathematics 1640–1940. Amsterdam: Elsevier, 2005: 564–587. DOI: https://doi.org/10.1016/b978-044450871-3/50125-x. CORCIONE M. Heat transfer features of buoyancy-driven nanofluids inside rectangular enclosures differentially heated at the sidewalls [J]. International Journal of Thermal Sciences, 2010, 49(9): 1536–1546. DOI: https://doi.org/10.1016/j.ijthermalsci.2010.05.005. BERGMAN T L, INCROPERA F P, DEWITT D P, LAVINE A S. Fundamentals of heat and mass transfer [M]. New Jersey: John Wiley & Sons, 2011. MOOSAVI R, GANDJALIKHAN NASSAB S A. Turbulent forced convection over a single inclined forward step in a duct: Part I-flow field [J]. Engineering Applications of Computational Fluid Mechanics, 2008, 2(3): 366–374. DOI: https://doi.org/10.1080/19942060.2008.11015236. KIM B. An experimental study on fully developed laminar flow and heat transfer in rectangular microchannels [J]. International Journal of Heat and Fluid Flow, 2016, 62: 224–232. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2016.10.007. HILO A K, ABU TALIB A R, ACOSTA IBORRA A, HAMEED SULTAN M T, ABDUL HAMID M F. Effect of corrugated wall combined with backward-facing step channel on fluid flow and heat transfer [J]. Energy, 2020, 190: 116294. DOI: https://doi.org/10.1016/j.energy.2019.116294.