Effects of tributyltin on placental cytokine production

Journal of Perinatal Medicine - Tập 46 Số 8 - Trang 867-875 - 2018
Yuko Arita1, Michael Kirk1, Neha Gupta1, Ramkumar Menon2, Darios Getahun3, Morgan R. Peltier1,2
1Department of Biomedical Research , NYU Winthrop Hospital, 101 Mineola Blvd , Mineola, NY 11501 , USA
2Department of Obstetrics and Gynecology, UTMB-Galveston, Galveston, TX, USA
3Department of Research and Evaluation , Kaiser-Permenante Southern California , Pasadena, CA , USA

Tóm tắt

Abstract Objective Tributyltin (TBT) is a persistent pollutant but its effects on placental function are poorly understood as are its possible interactions with infection. We hypothesized that TBT alters the production of sex hormones and biomarkers for inflammation and neurodevelopment in an infection-dependent manner. Methods Placental explant cultures were treated with 0–5000 nM TBT in the presence and absence of Escherichia coli. A conditioned medium was harvested and concentrations of steroids (progesterone, P4; testosterone, T and estradiol, E2) as well as biomarkers of inflammation [interleukin (IL)-1β (IL-1β), tumor necrosis factor (TNF-α), IL-10, IL-6, soluble glycoprotein 130 (sgp-130) and heme oxygenase-1 (HO-1)], oxidative stress [8-iso-prostaglandin (8-IsoP)] and neurodevelopment [brain-derived neurotrophic factor (BDNF)] were quantified. Results TBT increased P4 slightly but had little or no effect on T or E2 production. IL-1β, IL-6, sgp-130, IL-10 and 8-IsoP production was enhanced by TBT. P4 and IL-6 production was also enhanced by TBT for bacteria-stimulated cultures but TBT significantly inhibited bacteria-induced IL-1β and sgp-130 production. High doses of TBT also inhibited BDNF production. Conclusions TBT increases P4 but has minimal effect on downstream steroids. It enhances the production of inflammatory biomarkers such as IL-1β, TNF-α, IL-10 and IL-6. Inhibition of sgp-130 by TBT suggests that TBT may increase bioactive IL-6 production which has been associated with adverse neurodevelopmental outcomes. Reduced expression of BDNF also supports this possibility.

Từ khóa


Tài liệu tham khảo

Rantakokko P, Main KM, Wohlfart-Veje C, Kiviranta H, Airaksinen R, Vartiainen T, et al. Association of placenta organotin concentrations with growth and ponderal index in 110 newborn boys from Finland during the first 18 months of life: a cohort study. Environ Health. 2014;13:45.

Cooke GM, Forsyth DS, Bondy GS, Tachon R, Tague B, Coady L. Organotin speciation and tissue distribution in rat dams, fetuses, and neonates following oral administration of tributyltin chloride. J Toxicol Environ Health A. 2008;71:384–95.

Adeeko A, Li D, Forsyth DS, Casey V, Cooke GM, Barthelemy J, et al. Effects of in utero tributyltin chloride exposure in the rat on pregnancy outcome. Toxicol Sci. 2003;74:407–15.

Asakawa H, Tsunoda M, Kaido T, Hosokawa M, Sugaya C, Inoue Y, et al. Enhanced inhibitory effects of TBT chloride on the development of F1 rats. Arch Environ Contam Toxicol. 2010;58:1065–73.

Heidrich DD, Steckelbroeck S, Klingmuller D. Inhibition of human cytochrome P450 aromatase activity by butyltins. Steroids. 2001;66:763–9.

Peltier MR. Immunology of term and preterm labor. Reprod Biol Endocrinol. 2003;1:122.

Zerbo O, Qian Y, Yoshida C, Grether JK, Van de Water J, Croen LA. Maternal infection during pregnancy and autism spectrum disorders. J Autism Dev Disord. 2015;45:4015–25.

Lee BK, Magnusson C, Gardner RM, Blomstrom A, Newschaffer CJ, Burstyn I, et al. Maternal hospitalization with infection during pregnancy and risk of autism spectrum disorders. Brain Behav Immun. 2015;44:100–5.

Bronson SL, Bale TL. Prenatal stress-induced increases in placental inflammation and offspring hyperactivity are male-specific and ameliorated by maternal antiinflammatory treatment. Endocrinology. 2014;155:2635–46.

Roberts BA, Martel MM. Prenatal testosterone and preschool disruptive behavior disorders. Pers Individ Dif. 2013;55:962–6.

Manning JT, Baron-Cohen S, Wheelwright S, Sanders G. The 2nd to 4th digit ratio and autism. Dev Med Child Neurol. 2001;43:160–4.

Auyeung B, Baron-Cohen S, Ashwin E, Knickmeyer R, Taylor K, Hackett G. Fetal testosterone and autistic traits. Br J Psychol. 2009;100:1–22.

Peltier MR, Arita Y, Klimova NG, Gurzenda EM, Koo HC, Murthy A, et al. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) enhances placental inflammation. J Reprod Immunol. 2013;98:10–20.

Peltier MR, Arita Y, Gurzenda EM, Klimova N, Koo HC, Murthy A, et al. Effect of carbon monoxide on bacteria-stimulated cytokine production by placental explants. Am J Reprod Immunol. 2013;69:142–9.

Peltier MR, Klimova NG, Arita Y, Gurzenda EM, Murthy A, Chawala K, et al. Polybrominated diphenyl ethers enhance the production of proinflammatory cytokines by the placenta. Placenta. 2012;33:745–9.

Peltier MR, Gurzenda EM, Murthy A, Chawala K, Lerner V, Kharode I, et al. Can oxygen tension contribute to an abnormal placental cytokine milieu? Am J Reprod Immunol. 2011;66:279–85.

Hiromori Y, Yui H, Nishikawa J, Nagase H, Nakanishi T. Organotin compounds cause structure-dependent induction of progesterone in human choriocarcinoma Jar cells. J Steroid Biochem Mol Biol. 2016;155:190–8.

Nakanishi T, Kohroki J, Suzuki S, Ishizaki J, Hiromori Y, Takasuga S, et al. Trialkyltin compounds enhance human CG secretion and aromatase activity in human placental choriocarcinoma cells. J Clin Endocrinol Metab. 2002;87:2830–7.

Nakanishi T, Nishikawa J, Hiromori Y, Yokoyama H, Koyanagi M, Takasuga S, et al. Trialkyltin compounds bind retinoid X receptor to alter human placental endocrine functions. Mol Endocrinol. 2005;19:2502–16.

Nakanishi T, Hiromori Y, Yokoyama H, Koyanagi M, Itoh N, Nishikawa J, et al. Organotin compounds enhance 17beta-hydroxysteroid dehydrogenase type I activity in human choriocarcinoma JAr cells: potential promotion of 17beta-estradiol biosynthesis in human placenta. Biochem Pharmacol. 2006;71:1349–57.

Nakano K, Tsunoda M, Konno N. Tributyltin (TBT) increases TNFalpha mRNA expression and induces apoptosis in the murine macrophage cell line in vitro. Environ Health Prev Med. 2004;9:266–71.

Hurt K, Hurd-Brown T, Whalen M. Tributyltin and dibutyltin alter secretion of tumor necrosis factor alpha from human natural killer cells and a mixture of T cells and natural killer cells. J Appl Toxicol. 2013;33:503–10.

Brown S, Whalen M. Tributyltin alters secretion of interleukin 1 beta from human immune cells. J Appl Toxicol. 2015;35:895–908.

Trautman MS, Collmer D, Edwin SS, White W, Mitchell MD, Dudley DJ. Expression of interleukin-10 in human gestational tissues. J Soc Gynecol Investig. 1997;4:247–53.

Dudley DJ, Edwin SS, Dangerfield A, Jackson K, Trautman MS. Regulation of decidual cell and chorion cell production of interleukin-10 by purified bacterial products. Am J Reprod Immunol. 1997;38:246–51.

Mitra S, Gera R, Siddiqui WA, Khandelwal S. Tributyltin induces oxidative damage, inflammation and apoptosis via disturbance in blood-brain barrier and metal homeostasis in cerebral cortex of rat brain: an in vivo and in vitro study. Toxicology. 2013;310:39–52.

Yoshimura K, Hirsch E. Interleukin-6 is neither necessary nor sufficient for preterm labor in a murine infection model. J Soc Gynecol Investig. 2003;10:423–7.

Robertson SA, Christiaens I, Dorian CL, Zaragoza DB, Care AS, Banks AM, et al. Interleukin-6 is an essential determinant of on-time parturition in the mouse. Endocrinology. 2010;151:3996–4006.

Smith SE, Li J, Garbett K, Mirnics K, Patterson PH. Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci. 2007;27:10695–702.

Almeida LE, Roby CD, Krueger BK. Increased BDNF expression in fetal brain in the valproic acid model of autism. Mol Cell Neurosci. 2014;59:57–62.

Kirsten TB, Queiroz-Hazarbassanov N, Bernardi MM, Felicio LF. Prenatal zinc prevents communication impairments and BDNF disturbance in a rat model of autism induced by prenatal lipopolysaccharide exposure. Life Sci. 2015;130:12–7.

Qin XY, Feng JC, Cao C, Wu HT, Loh YP, Cheng Y. Association of peripheral blood levels of brain-derived neurotrophic factor with autism spectrum disorder in children: a systematic review and meta-analysis. JAMA Pediatr. 2016;170:1079–86.