Effects of total dose irradiation on the threshold voltage of H-gate SOI NMOS devices
Tóm tắt
This work researched the impact of total dose irradiation on the threshold voltage of N-type metal oxide semiconductor field effect transistors (nMOSFETs) in silicon-on-insulator (SOI) technology. Using the subthreshold separation technology, the factor causing the threshold voltage shift was divided into two parts: trapped oxide charges and interface states, the effects of which are presented under irradiation. Furthermore, by analyzing the data, the threshold voltage shows a negative shift at first and then turns to positive shift when irradiation dose is lower. Additionally, the influence of the dose rate effects on threshold voltage is discussed. The research results show that the threshold voltage shift is more significant in low dose rate conditions, even for a low dose of 100 krad(Si). The degeneration value of threshold voltage is 23.4 % and 58.0 % for the front-gate and the back-gate at the low dose rate, respectively.
Tài liệu tham khảo
J.R. Schwank, M.R. Shaneyfelt, D.M. Fleetwood et al., Radiation effects in MOS oxides. IEEE Trans. Nucl. Sci. 2008(55), 1833–1853 (2001). doi:10.1109/TNS.2008.040
J.R. Schwank, V. Ferlet-Cavrois, M.R. Shaneyfelt et al., Radiation effects in SOI technologies. IEEE Trans. Nucl. Sci. 2003(55), 522–537 (2003). doi:10.1109/TNS.812930
O. Flament, A. Torres, V. Ferlet-Cavrois, Bias dependence of FD transistor response to total dose irradiation. IEEE Trans Nucl. Sci. 50, 2316–2321 (2003). doi:10.1109/TNS.2003.822594
X. Wu, W. Lu, X. Wang et al., Influence of channel length and layout on TID for 0.18 μm NMOS transistors. Nucl. Sci. Tech. 24, 060202–060206 (2013). doi:10.13538/j.1001-8042/nst.2013.06.019
K. Potter, K. Morgan, C. Shaw et al., Total ionizing dose response of fluorine implanted silicon-on-insulator buried oxide. Microelectron. Reliab. 54, 2339–2343 (2014). doi:10.1016/j.microrel.2014.07.018
P. Paillet, J.R. Schwank, M.R. Shaneyfelt et al., Total dose hardness assurance testing using laboratory radiation sources. IEEE Trans. Nucl. Sci. 50, 2310–2315 (2003). doi:10.1109/TNS.2003.821392
J. Liu, J.C. Zhou, H.W. Luo et al., Total-dose-induced edge effect in SOI NMOS transistors with different layouts. Microelectron. Reliab. 50, 45–47 (2010). doi:10.1016/j.microrel.2009.09.003
S. Mattiazzo, M. Battaglia, D. Bisello et al., Total dose effects on a FD-SOI technology for monolithic pixel sensors. IEEE Trans. Nucl. Sci. 57, 2135–2141 (2010). doi:10.1109/TNS.2009.2038378
H.X. Huang, D.W. Bi, M. Chen et al., Improving total dose tolerance of buried oxides in SOI wafers by multiple-step Si+ implantation. IEEE Trans. Nucl. Sci. 61, 1400–1406 (2014). doi:10.1109/TNS.2014.2316017
F. Faccio, E.H.M. Heijine, P. Jarron et al., Study of device parameters for analog IC design in a 1.2 μm CMOS-SOI technology after 10 Mrad. IEEE Trans. Nucl. Sci. 39, 1739–1746 (1992). doi:10.1109/23.211361
D.M. Fleetwood, H.A. Eisen, Total-dose radiation hardness assurance. IEEE Trans. Nucl. Sci. 50, 552–564 (2003). doi:10.1109/TNS.2003.813130
B. Gao, G. Liu, L.X. Wang et al., Research on enhanced low dose rate sensitivity effect for PMOSFET used in space dosimeter. Atomic Energy Sci. Technol. 47, 848–853 (2013). doi:10.7538/yzk.2013.47.05.0848
P.J. McWhorter, P.S. Winokur, Simple technique for separating the effects of interface traps and trapped oxide charge in metal-oxide-semiconductor transistors. Appl. Phys. Lett. 48, 133–135 (1986). doi:10.1063/1.96974
B.P. He, Z.B. Yao, J.K. Sheng, Study of the dose rate effect of 180 nm nMOSFETs. Chin Phys C 39(1–5), 016004 (2015). doi:10.1088/1674-1137/39/1/016004
P.H. Harold, L.P. Ronald, C.W. Steven et al., Mechanisms for radiation dose-rate sensitivity of bipolar transistors. IEEE Trans. Nucl. Sci. 50, 1901–1909 (2003). doi:10.1109/TNS.2003.821803
H.P. Hjalmarson, R.L. Pease, C.E. Hembree et al., Dose-rate dependence of radiation-induced interface trap density in silicon bipolar transistors. Nucl. Instrum. Methods Phys. Res. B 2006(250), 269–273 (2006). doi:10.1016/j.nimb.04.122
X.J. Chen, H.J. Barnaby, R.D. Schrimpf et al., Nature of interface defect buildup in gate bipolar devices under low dose rate irradiation. IEEE Trans. Nucl. Sci. 53, 3649–3654 (2006). doi:10.1109/TNS.2006.885375
J. Boch, F. Saigné, R.D. Schrimpf et al., Physical model for the low-dose-rate effect in bipolar devices. IEEE Trans. Nucl. Sci. 53, 3655–3660 (2006). doi:10.1109/TNS.2006.886008
E.H. Poindexter, MOS interface states: overview and physicochemical perspective. Semicond. Sci. Technol. 4, 961–969 (1984). doi:10.1088/0268-1242/4/12/001
N.S. Saks, R.B. Klein, D.L. Griscom, Formation of interface traps in MOSFETs during annealing following low temperature irradiation. IEEE Trans. Nucl. Sci. 35, 1234–1240 (1988). doi:10.1109/23.25445
J. Alvarado, E. Boufouss, V. Kilchytska et al., Compact model for single event transients and total dose effects at high temperatures for partially depleted SOI MOSFETs. Microelectron. Reliab. 50, 1852–1856 (2010). doi:10.1016/j.microrel.2010.07.040
B.P. He, Y.J. Yao, H.L. Peng et al., Effects of temperature and dose rates on mobility of NMOS devices. Microelectronics 30, 179–181 (2000). doi:10.3969/j.issn.1004-3365.2000.03.012