Effects of titanium surface topography on bone integration: a systematic review

Clinical Oral Implants Research - Tập 20 Số s4 - Trang 172-184 - 2009
Ann Wennerberg1, Tomas Albrektsson2
1Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden
2Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Tóm tắt

Abstract

Aim: To analyse possible effects of titanium surface topography on bone integration.

Materials and methods: Our analyses were centred on a PubMed search that identified 1184 publications of assumed relevance; of those, 1064 had to be disregarded because they did not accurately present in vivo data on bone response to surface topography. The remaining 120 papers were read and analysed, after removal of an additional 20 papers that mainly dealt with CaP‐coated and Zr implants; 100 papers remained and formed the basis for this paper. The bone response to differently configurated surfaces was mainly evaluated by histomorphometry (bone‐to‐implant contact), removal torque and pushout/pullout tests.

Results and discussion: A huge number of the experimental investigations have demonstrated that the bone response was influenced by the implant surface topography; smooth (Sa<0.5 μm) and minimally rough (Sa 0.5–1 μm) surfaces showed less strong bone responses than rougher surfaces. Moderately rough (Sa>1–2 μm) surfaces showed stronger bone responses than rough (Sa>2 μm) in some studies. One limitation was that it was difficult to compare many studies because of the varying quality of surface evaluations; a surface termed ‘rough’ in one study was not uncommonly referred to as ‘smooth’ in another; many investigators falsely assumed that surface preparation per se identified the roughness of the implant; and many other studies used only qualitative techniques such as SEM. Furthermore, filtering techniques differed or only height parameters (Sa, Ra) were reported.

Conclusions: • Surface topography influences bone response at the micrometre level.

• Some indications exist that surface topography influences bone response at the nanometre level.

• The majority of published papers present an inadequate surface characterization.

• Measurement and evaluation techniques need to be standardized.

• Not only height descriptive parameters but also spatial and hybrid ones should be used.

Từ khóa


Tài liệu tham khảo

Abrahamsson I., 2001, Bone and soft tissue integration to titanium implants with different surface topography, International Journal of Oral & Maxillofacial Implants, 16, 323

10.1067/mpr.2001.112415

10.3109/17453678108991776

Albrektsson T., 2004, Oral implant surfaces, International Journal of Prosthodontics, 17, 536

10.1111/j.1600-0501.2007.01396.x

10.1111/j.1708-8208.2007.00030.x

Att W., 2007, Effect of supramicron roughness characteristics produced by 1‐ and 2‐step acid etching on the osseointegration capability of titanium, International Journal of Oral & Maxillofacial Implants, 22, 719

10.1111/j.1708-8208.2000.tb00008.x

10.1111/j.1708-8208.2000.tb00007.x

10.1177/154405910408300704

Buser D., 1998, Removal torque of titanium implants in the maxilla of miniature pigs, International Journal of Oral & Maxillofacial Implants, 13, 611

10.1002/(SICI)1097-4636(199905)45:2<75::AID-JBM1>3.0.CO;2-P

10.1002/jbm.820250708

10.1177/154405910608500616

10.1016/S0142-9612(03)00218-7

10.1111/j.1365-2842.2006.01669.x

10.1034/j.1600-0501.1996.070306.x

10.1067/mpr.2000.111966

Cordioli G., 2000, Removal torque and histomorphometric investigation of 4 different titanium surfaces, International Journal of Oral & Maxillofacial Implants, 15, 668

10.1902/jop.2007.070065

10.1016/S0883-5403(98)90201-7

10.1002/jbm.b.30734

10.1111/j.1600-051X.2007.01135.x

Ellingsen J.E., 2004, Improved retention and bone‐tolmplant contact with fluoride‐modified titanium implants, International Journal of Oral & Maxillofacial Implants, 19, 659

10.1111/j.1708-8208.2007.00060.x

10.1177/039139880202500809

10.1002/jbm.a.10044

10.1016/S0142-9612(02)00548-3

Goené R., 2007, Influence of a nanometer‐scale surface enhancement on de novo bone formation on titanium implants, International Journal of Periodontics and Restorative Dentistry, 27, 3

10.1111/j.1708-8208.2000.tb00002.x

10.1034/j.1600-0501.1992.030205.x

10.1902/jop.2006.050325

10.1111/j.1708-8208.2005.tb00042.x

10.1016/S0300-5712(02)00018-0

10.1016/S0142-9612(02)00266-1

10.1002/1097-4636(20011215)57:4<485::AID-JBM1194>3.0.CO;2-1

10.1111/j.1708-8208.2001.tb00141.x

10.1034/j.1600-0501.1998.090101.x

Hsu S.H., 2007, Characterization and biocompatibility of a titanium dental implant with a laser irradiated and dual‐acid etched surface, Biomedical Material Engeering, 17, 53

Huré G., 1996, Does titanium surface treatment influence the bone‐implant interface? SEM and histomorphometry in a 6‐month sheep study, International Journal of Oral & Maxillofacial Implants, 11, 506

10.1034/j.1600-0501.2001.012002128.x

Ivanoff C.J., 2003, Histologic evaluation of bone response to oxidized and turned titanium micro‐implants in human jawbone, International Journal of Oral & Maxillofacial Implants, 18, 341

10.1002/(SICI)1097-4636(199810)42:1<20::AID-JBM4>3.0.CO;2-Q

10.1034/j.1600-0501.1998.090404.x

10.1007/s10856-006-9683-y

10.1007/s10856-006-9682-z

10.1902/jop.2001.72.10.1384

Kim Y.H., 2003, A histomorphometric analysis of the effects of various surface treatment methods on osseointegration, International Journal of Oral & Maxillofacial Implants, 18, 349

10.1034/j.1600-0501.2001.012004350.x

10.1034/j.1600-0501.1997.080601.x

10.1023/A:1018548225899

10.1016/0142-9612(96)88711-4

Lazzara R.J., 1999, A human histologic analysis of Osseotite and machined surfaces using implants with 2 opposing surfaces, International Journal of Periodontics and Restorative Dentistry, 19, 117

10.1002/jbm.a.20126

10.1016/j.dental.2006.06.025

10.1016/j.biomaterials.2003.09.048

10.1016/j.biomaterials.2008.01.009

London R.M., 2002, Histologic comparison of a thermal dual‐etched implant surface to machined, TPS, and HA surfaces, International Journal of Oral & Maxillofacial Implants, 17, 369

10.1034/j.1600-0501.1996.070414.x

Marinho V., 2003, Sandblasted and acid‐etched dental implants, International Journal of Oral & Maxillofacial Implants, 18, 75

Mazor Z., 2003, Preliminary 3‐dimensional surface texture measurement and early loading results with a microtextured implant surface, International Journal of Oral & Maxillofacial Implants, 18, 729

10.1002/jbm.a.31744

Meirelles L., 2008, The effect of chemical and nano topographical modifications on early stage of osseointegration, International Journal of Oral & Maxillofacial Implants, 23, 641

10.1111/j.1708-8208.2008.00089.x

10.1016/j.biomaterials.2007.07.020

10.1034/j.1600-0501.2003.00791.x

10.1046/j.1600-0501.2003.00968.x

10.1177/00220345000790110701

10.1111/j.1365-2842.2006.01688.x

10.1002/jor.20665

10.1097/00008505-199700640-00002

10.1034/j.1600-0501.2002.130504.x

Piatelli A., 1998, Histologic and histomorphometric analysis of the bone response to machined and sandblasted titanium implants, International Journal of Maxillofacial Implants, 13, 805

10.1111/j.1708-8208.2003.tb00016.x

10.1016/S0142-9612(02)00167-9

10.1016/S0142-9612(03)00256-4

10.1002/jbm.a.10580

Roynesdal A.‐K., 1999, A combination of 3 different Endosseous nonsubmerged implants in Edentulous mandibles, Internal Journal of Oral and Maxillofacial Implants, 14, 543

Roynesdal A.‐K., 1998, A comparative clinical study of three different Endosseous implants in Edentulous mandibles, International Journal of Oral & Maxillofacial Implants, 13, 500

10.1177/154405910608500603

10.1002/jbm.b.30608

10.1563/1548-1336(2007)33[232:ISAAME]2.0.CO;2

10.1111/j.1708-8208.2000.tb00120.x

10.1007/978-94-011-7772-6

10.1016/S0142-9612(03)00261-8

10.1111/j.1600-0501.2005.01230.x

Sul Y.T., 2006, Which surface properties enhance bone response to implants? Comparison of oxidized magnesium, TiUnite, and Osseotite implant surfaces, International Journal of Prosthodontics, 19, 319

10.1016/j.biomaterials.2005.04.058

10.1023/A:1012837905910

10.1034/j.1600-0501.2002.130304.x

Sul Y.T., 2005, Optimum surface properties of oxidized implants for reinforcement of osseointegration, International Journal of Oral & Maxillofacial Implants, 20, 349

10.1002/jbm.a.32041

10.1016/S8756-3282(97)00204-4

10.1002/jbm.b.20003

10.1902/jop.2008.060413

10.1002/(SICI)1097-4636(199807)41:1<41::AID-JBM5>3.0.CO;2-Q

10.1034/j.1600-0501.1998.090407.x

10.1016/S0142-9612(98)00039-8

Warren P., 2002, A retrospective radiographic analysis of bone loss following placement of TiO2 grit‐blasted implants in the posterior maxilla and mandible, International Journal of Oral & Maxillofacial Implants, 17, 399

Wennerberg A.On surface roughness and implant incorporation. PhD thesis 1996 Dept Handicap Research Gothenburg University Göteborg Sweden.

Wennerberg A., 2000, Suggested guidelines for the topographic evaluation of implant surfaces, International Journal of Oral & Maxillofacial Implants, 15, 331

Wennerberg A., 2009, On implant surfaces. Review, International Journal of Oral & Maxillofacial Implants

Wennerberg A., 1996, Bone tissue response to commercially pure titanium implants blasted with fine and coarse particles of aluminum oxide, International Journal of Oral & Maxillofacial Implants, 11, 38

10.1034/j.1600-0501.1995.060103.x

10.1016/0142-9612(96)80750-2

10.1002/(SICI)1097-4636(199602)30:2<251::AID-JBM16>3.0.CO;2-P

Wennerberg A., 1997, A 1‐year follow‐up of implants of differing surface roughness placed in rabbit bone, International Journal of Oral & Maxillofacial Implants, 12, 486

10.1034/j.1600-0501.1998.090102.x

10.1023/A:1018560528625

10.1111/j.1600-0501.2004.01053.x

10.1111/j.1600-051X.2004.00568.x

Wieland M., 2001, Wavelength‐dependent roughness, International Journal of Oral & Maxillofacial Implants, 16, 163