Effects of the semi-dwarfing sdw1/denso gene in barley
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ashikari M, Sasaki A, Ueguchi-Tanaka M, Itoh H, Nishimura A, Datta S, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) Loss-of-function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice ‘green revolution’. Breed Sci 52:143–150
Barua UM, Chalmers KJ, Thomas WTB, Hackett CA, Lea V, Jack P, Forster BP, Waugh R, Powell W (1993) Molecular mapping of genes determining height, time to heading, and growth habit in barley (Hordeum vulgare). Genome 36:1080–1087
Bezant J, Laurie D, Pratchett N, Chojecki J, Kearsey M (1996) Marker regression mapping of QTL controlling flowering time and plant height in a spring barley (Hordeum vulgare L.) cross. Heredity 77:64–73
Boulger MC, Sears RG, Kronsrad WE (1981) An investigation of the association between dwarfing sources and gibberellic acid response in barley. In: Asher MJC, Ellis RP, Hayter AM (eds) Barley Genetics IV, Proc. 4th Int Barley Genetics Symp. Edinburgh, pp 550–553
Bouma J (1967) New variety of spring barley “Diamant” in Czechoslovakia. In: Induzierte Mutationen und ihre Nutzung, Erwin Baur Gedä chtnisvorlessingen IV, 1966, Abh. Dt. Akad. Wiss. Berl., Akademie, Berlin, 2:177–182
Börner A, Korzun V, Malyshev S, Ivandic V, Graner A (1999) Molecular mapping of two dwarfing genes differing in their GA response on chromosome 2H of barley. Theor Appl Genet 99:670–675
Chalmers KJ, Barua UM, Hackett CA, Thomas WTB, Waugh R, Powell W (1993) Identification of RAPD markers linked to genetic factors controlling the milling energy requirement of barley. Theor Appl Genet 87:314–320
Chloupek O, Forster B, Thomas W (2006) The effect of semi-dwarf genes on root system size in field grown barley. Theor Appl Genet 112:779–786
Chono M, Honda I, Zeniya H, Yoneyama K, Saisho D, Takeda K, Takatsuto S, Hoshino T, Watanabe Y (2003) A semidwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor. Plant Physiol 133:1209–1219
Crozier A, Kamiya Y, Bishop G, Yokota T (2000) Biosynthesis of hormones and elicitor molecules. In: Buchanan B, Gruuissem W, Jones R (eds), Biochemistry and Molecular Biology of Plants, Amer Soc Plant Physiol, Rockville, Md:850–873
Dahleen LS, Van der Wal LJ, Franckowiak JD (2005) Characterization and molecular mapping of genes determining semidwarfism in barley. J Hered 96:654–662
Davies PJ (ed) (1995) Plant hormones: physiology, biochemistry and molecular biology. Kluwer, Dordrecht
Day AD, Dickson AD (1958) Effect of artificial lodging on grain and malt quality of fall-sown irrigated barley. Crop Sci 50:338–340
Druka A, Franckowiak J, Lundqvist U, Bonar N, Alexander J, Houston K, Radovic S, Shahinnia F, Vendramin V, Morgante M, Stein N, Waugh R (2011) Genetic dissection of barley morphology and development. Plant Physiol 155:617–627
Ellis RP, Forster BP, Gordon DC, Handley LL, Keith RP, Lawrence P, Meyer R, Powell W, Robinson D, Scrimgeour CM, Young G, Thomas WTB (2002) Phenotype/genotype associations for yield and salt tolerance in a barley mapping population segregating for two dwarfing genes. J Exp Bot 53:1163–1176
Finnie C, Bagge M, Steenholdt T, Østergaard O, Bak-Jensen KS, Backes G, Jensen A, Giese H, Larsen J, Roepstorff P, Svensson B (2009) Integration of the barley genetic and seed proteome maps for chromosome 1H; 2H; 3H; 5H and 7H. Funct Integr Genomics 9:135–143
Finnie C, Svensson B (2003) Feasibility study of a tissue-specific approach to barley proteome analysis: aleurone layer; endosperm; embryo and single seeds. J Cereal Sci 38:217–227
Forster BP (2001) Mutation genetics of salt tolerance in barley: an assessment of Golden Promise and other semi-dwarf mutants. Euphytica 120:317–328
Foster AE, Thompson AP (1987) Effects of a semidwarfing gene from Jotun on agronomic and quality traits of barley. In: Yasuda S and Kanishi T (eds) Proc 5th Int Barley Genetics Symp. Sanyo Press Co., Okayama 1987:979–982
Franckowiak JD (1995) The brachytic class of semidwarf mutants in barley. Barley Genet Newsl 24:56–59
Franckowiak JD (2000) Notes on plant height in six-rowed barley and FHB resistance. Barley Genetics VIII, Louge S (ed), Proc 8th Int Symp, Adelaide 2000, Dept Plant Sci Adelaide Univ, 3:1-7-109
Franckowiak JD, Kleinhofs A, Lundqvist U (2005) Descriptions of barley genetic stocks for 2005. Barley Genet Newsl 35:155–210
Franckowiak JD, Lundqvist U (2011) Descriptions of barley genetic stocks for 2011. Barley Genet Newsl 41:197
Franckowiak JD, Pecio A (1992) Coordinators report: a listing of genetic stocks. Barley Genet Newsl 21:116–126
Franckowiak JD, Yu GT (2011) Descriptions of barley genetic stocks for 2011. Barley Genet Newsl 41:80–81
Gocal GFW, Sheldon CC, Gubler F, Moritz T, Bagnall DJ, MacMillan CP, Li SF, Parish RW, Dennis ES, Weigel D, King RW (2001) GAMYB-like genes, flowering and gibberellin signaling in Arabidopsis. Plant Physiol 127:1682–1693
Gottwald S, Stein N, Börner A, Sasaki T, Graner A (2004) The gibberellic-acid insensitive dwarfing gene sdw3 of barley is located on chromosome 2HS in a region that shows high collinearity with rice chromosome 7L. Mol Gen Genomics 271:426–436
Górny AG (2001) Variation in utilization efficiency and tolerance to reduced water and nitrogen supply among wild and cultivated barley. Euphytica 117:59–66
Górny AG (2004) [Genetics of barley (Hordeum vulgare L.). In: Górny AG (ed) Cereal Genetics in Outline]. IPG PAS Poznań: 311–422 (in Polish)
Grausgruber H, Bointner H, Tumpold R, Ruckenbauer P (2002) Genetic improvement of agronomic and qualitative traits of spring barley. Plant Breed 121:411–416
Gustafsson Å (1963) Productive mutations induced in barley by ionizing radiations and chemical mutagens. Ibid 50:211–263
Haahr V, von Wettstein D (1976) Studies of an induced, high yielding dwarf-mutant of spring barley. In: Gaul H (ed) Barley Genet III, Proc 3rd Int Barley Genet Symp, Garching, 7–12 July 1975, Karl Thiemig, Munich, pp 215–218
Hagberg A, Gustafsson Å, Ehrenberg L (1958) Sparsely contra densely ionizing radiations and the origin of erectoid mutants in barley. Hereditas 44:523–530
Hagberg A, Nybom N, Gustafsson Å (1952) Allelism of erectoides mutations in barley. Hereditas 38:510–512
Han F, Ullrich SE (1994) Mapping of quantitative trait loci associated with malting quality in barley. Barley Genet Newsl 23:84–97
Hanson PR, Mcvitfie JA, Smalley JL (1980) Seedling response to exogenous gibberelic acid in spring barley. Z Pflanzenzüchtg 84:115–121
Hayes PM, Liu BH, Knapp SJ, Chen F, Jones B, Blake T, Franckowiak J, Rasmusson D, Sorrells M, Ullrich SE, Wesenberg D, Kleinhofs A (1993) Quantitative trait locus effects and environmental interaction in a sample of North-American barley germplasm. Theor Appl Genet 87:392–401
Hellewell KB, Rasmusson DC, Gallo-Meagher M (2000) Enhancing yield of semidwarf barley. Crop Sci 40:352–358
Hedden P, Phillips AL (2000) Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 5:523–530
Hedden P, Proebsting WM (1999) Genetic analysis of gibberellin biosynthesis. Plant Physiol 119:365–370
Heun M, Kennedy AE, Anderson JA, Lapitan NLV, Sorrells ME, Tanksley SD (1991) Construction of a restriction fragment length polymorphism map for barley (Hordeum vulgare). Genome 34:437–447
Holm E, Aastveit K (1966) Induction and effects of the brachytic allele in barley. Adv Front Plant Sci 17:81–94
Jia Q, Hang J, Westcott S, Zhang X, Bellgard M, Lance R, Li C (2009) GA-20 oxidase as a candidate for the semidwarf gene sdw1/denso in barley. Funct Integr Genomics 9:255–262
Jia Q, Zhang XQ, Westcott S, Broughton S, Cakir M, Yang J, Lance R, Li C (2011) Expression level of a gibberellin 20-oxidase gene is associated with multiple agronomic and quality traits in barley. Theor Appl Genet 122:1451–1460
Kaczmarek Z, Surma M, Adamski T, Czajka S (2004) Numerical method for detection of linkage between genes for two metrical traits. J Appl Genet 45(1):27–35
Kandemir N, Jones BJ, Wesenberg DM, Ullrich SE, Kleinhofs A (2000) Marker-assisted analysis of three grain yield QTL in barley (Hordeum vulgare L.) using near isogenic lines. Mol Breeding 6:157–167
Kristoffersen HE, Flengsrud R (2000) Separation and characterization of basic barley seed proteins. Electrophoresis 21:3693–3700
Kucera J, Lundqvist U, Gustafsson Å (1975) Inheritance of breviaristatum mutants in barley. Hereditas 80:263–278
Kuczyńska A, Kosmala A, Surma M, Adamski T (2012) Identification of tillering node proteins differentially accumulated in barley recombinant inbred lines with different juvenile growth habits. Int J Mol Sci 3:10410–10423
Kuczyńska A, Wyka T (2011) The effect of the denso dwarfing gene on morpho-anatomical characters in barley recombinant inbred lines. Breeding Sci 61:275–280
Laurie DA, Pratchett N, Romero C, Simpson E, Snape JW (1993) Assignment of the denso dwarfing gene to the long arm of chromosome 3 (3H) of barley by use of RFLP markers. Plant Breed 111:198–203
Lo SF, Yang SY, Chen KT, Hsing YL, Zeevaart JAD, Chen LJ, Yu SM (2008) A novel class of gibberellin 2-oxidases control semidwarfing, tillering and root development in rice. Plant Cell 20:2603–2618
Lundqvist U (2009) Eighty Years of Scandinavian Barley Mutation Genetics and Breeding. Induced Plant Mutations in the Genomics Era. Food and Agriculture Organization of the United Nations, Vienna, pp 39–43
Lundqvist U, Franckowiak JD, Konishi T (1997) New and revised descriptions of barley genes. Barley Genet Newsl 26:22–516
Malosetti M, Van Eeuwijk FA, Boer MP, Casas AM, Elia M (2011) Gene and QTL detection in a three-way barley cross under selection by a mixed model with kinship information using SNPs. Theor Appl Genet 122:1605–1616
Maluszynski M, Szarejko I (2005) Induced mutations in the green and gene revolutions. In: Tuberosa R, Phillips RL, Gale M (eds) In the wake of the double helix: from the green revolution to the gene revolution. Avenue Media, Bologna, pp 403–425
Manosalva PM, Davidson RM, Liu B, Zhu X, Hulbert SH, Leung H, Leach JE (2009) A germin-like protein gene family functions as a complex quantitative trait locus conferring broad-spectrum disease resistance in rice. Plant Physiol 149:286–296
Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y (2002) Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 9:11–17
Murray F, Kalla R, Jacobsen J, Gubler F (2003) A role for HvGAMYB in anther development. Plant J 33:481–491
Olszewski N, Sun T-P, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14:S61–S80
Østergaard O, Finnie C, Laugesen S, Roepstorff P, Svensson B (2004) Proteome analysis of barley seeds: identification of major proteins from two-dimensional gels (pI 4–7). Proteomics 4:2437–2447
Pakniyat H, Thomas WTB, Caligari PDS, Forster BP (1997) Comparison of salt tolerance of GPert and non-GPert barleys. Plant Breed 116:189–191
Peng JR, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) “Green revolution” genes encode mutant gibberellin response modulators. Nature 400:256–261
Persson G, Hagberg A (1969) Induced variation in a quantitative character in barley. Morphology and cytogenetics of erectoides mutants. Hereditas 61:115–178
Plackett ARG, Thomas SG, Wilson ZA, Hedden P (2011) Gibberellin control of stamen development: a fertile field. Trends Plant Sci 16:568–578
Powell W, Caligari PDS, Swanston JS, Jinks JL (1985) Genetic investigations into beta-glucan content in barley. Theor Appl Genet 71:461–466
Powers L (1936) The nature of the interactions of genes affecting four quantitative characters in a cross between Hordeum deficiens and H. vulgare. Genetics 21:398–420
Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M (2004) An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol 134:1642–53
Salas Fernandez MG, Becraft PW, Yin Y, Lübbersteadt T (2009) From dwarves to giants: plant height manipulation for biomass yield. Trends Plant Sci 14:454–461
Sameri M, Nakamura S, Nair SK, Takeda K, Komatsuda T (2009) A quantitative trait locus for reduced culm internode length in barley segregates as a Mendelian gene. Theor Appl Genet 118:643–652
Sameri M, Takeda K, Komatsuda T (2006) Quantitative trait loci controlling agronomic traits in recombinant inbred lines from a cross of oriental- and occidental-type barley cultivars. Breed Sci 56:243–252
Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Jeong DH, An G, Kitano H, Ashikari M, Matsuoka M (2003) Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299:1896–1898
Smilde WD, Haluskova J, Sasaki T, Graner A (2001) New evidence for the synteny of rice chromosome 1 and barley chromosome 3H from rice expressed sequence tags. Genome 44:361–366
Snape RW, Simpson E (1981a) The genetical expectations of doubled haploid lines derived from different filial generations. Theor Appl Genet 60:123–128
Snape RW, Simpson E (1981b) The use of doubled haploid lines for genetical analysis in barley. In: Proc 4th Int Barley Genetics Symp, Edinburgh, 1981. Edinburgh Univ Press, pp 704–709
Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. PNAS 99:9043–9048
Spielmeyer W, Ellis M, Robertson M, Ali S, Lenton JR, Chandler PM (2004) Isolation of gibberellin metabolic pathway genes from barley and comparative mapping in barley, wheat and rice. Theor Appl Genet 109:847–855
Stoy V, Hagberg A (1967) Effects of growth regulators on ear density mutants in barley. Hereditas 58:359–384
Swenson SP, Wells DG (1944) The linkage relation of four genes in chromosome 1 of barley. J Am Soc Agron 36:429–435
Szarejko I, Maluszynski M (1984) Two new dwarfism genes on barley chromosome 3. Barley Genet Newsl 14:35–38
Thomas WTB, Powell W, Swanston JS (1991) The effects of major genes on quantitatively varying characters in barley. 4. The GPert and denso loci and quality characters. Heredity 66:381–389
Thomas WTB, Powell W, Waugh R, Chalmers KJ, Barua UM, Jack P, Lea V, Forster BP, Swanston JS, Ellis PR (1995) Detection of quantitative trait loci for agronomic, yield, grain and disease characters in spring barley (Hordeum vulgare L.). Theor Appl Genet 91:1037–1047
Thomas WTB, Powell W, Wood W (1984) The chromosomal location of the dwarfing gene present in the spring barley variety Golden Promise. Heredity 53:177–183
Tsuchiya T (1974) Allelic relationships of genes for short-awned mutants in barley. Barley Genet Newsl 4:80–81
Tsuchiya T (1976) Allelism testing of genes between brachytic and erectoides mutants. Barley Genet Newsl 6:79–81
von Eeuwijk FA, Bink M, Chenu K, Chapman SC (2010) Detection and use of QTL for complex traits in multiple environments. Curr Opinion Plant Biol 13:193–205
Vu GTH, Wicker T, Buchmann JP, Chandler PM, Matsumoto T, Graner A, Stein N (2010) Fine mapping and syntenic integration of the semi-dwarfing gene sdw3 of barley. Funct Integr Genomics 10:509–521
Yu GT, Horsley RD, Zhang B, Franckowiak JD (2010) A new semi-dwarfing gene identified by molecular mapping of quantitative trait loci in barley. Theor Appl Genet 120:853–861
Yin X, Kropff MJ, Stam P (1999) The role of ecophysiological models in QTL analysis: the example of specific leaf area in barley. Heredity 82:415–421
Zhang J, Yang X, Moolhuijzen P, Li C, Bellgard M, Lance R, Appels R (2005) Towards isolation of the barley green revolution gene. Proc Australian Barley Technical Symp, 11–14 September 2005, Hobart, Tasmania
Zhang J, Zhang W (2003) Tracing sources of dwarfing genes in barley breeding in China. Euphytica 131:285–292