Effects of the diploidisation process upon the 5S and 35S rDNA sequences in the allopolyploid species of the Dilatata group of Paspalum (Poaceae, Paniceae)

Australian Journal of Botany - Tập 67 Số 7 - Trang 521 - 2019
Magdalena Vaio1, Cristina Mazzella1, Marcelo Guerra2, Pablo Speranza1
1Laboratorio de Evolución y Domesticación de las Plantas, Facultad de Agronomía, Universidad de la República, Avenida Eugenio Garzón 780, CP 12900, Montevideo, Uruguay.
2Laboratorio de Citogenética e Evolução Vegetal, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Avenida da Engenharia s/n CEP 50740600, Recife, Pernambuco, Brazil.

Tóm tắt

The Dilatata group of Paspalum includes species and biotypes native to temperate South America. Among them, five sexual allotetraploids (x = 10) share the same IIJJ genome formula: P. urvillei Steud, P. dasypleurum Kunze ex Desv., P. dilatatum subsp. flavescens Roseng., B.R. Arrill. & Izag., and two biotypes P. dilatatum Vacaria and P. dilatatum Virasoro. Previous studies suggested P. intermedium Munro ex Morong & Britton and P. juergensii Hack. or related species as their putative progenitors and donors of the I and J genome, respectively, and pointed to a narrow genetic base for their maternal origin. It has not yet been established whether the various members of the Dilatata group are the result of a single or of multiple allopolyploid formations. Here, we aimed to study the evolutionary dynamics of rRNA genes after allopolyploidisation in the Dilatata group of Paspalum and shed some light into the genome restructuring of the tetraploid taxa with the same genome formula. We used double target fluorescence in situ hybridisation of 35S and 5S rDNA probes and sequenced the nrDNA internal transcribed spacer (ITS) region. A variable number of loci at the chromosome ends were observed for the 35S rDNA, from 2 to 6, suggesting gain and loss of sites. For the 5S rDNA, only one centromeric pair of signals was observed, indicating a remarkable loss after polyploidisation. All ITS sequences generated were near identical to the one found for P. intermedium. Although sequences showed a directional homogeneisation towards the putative paternal progenitor in all tetraploid species, the observed differences in the number and loss of rDNA sites suggest independent ongoing diploidisation processes in all taxa and genome restructuring following polyploidy.

Từ khóa


Tài liệu tham khảo

Adams, 2005, Trends in Genetics, 21, 539, 10.1016/j.tig.2005.07.009

Bennett, 1966, Crop Science, 6, 52, 10.2135/cropsci1966.0011183X000600010016x

Burson, 1978, Canadian Journal of Genetics and Cytology, 20, 365, 10.1139/g78-041

Burson, 1979, Crop Science, 19, 534, 10.2135/cropsci1979.0011183X001900040025x

Burson, 1991, Botanical Gazette, 152, 219, 10.1086/337883

Burson, 1971, Crop Science, 11, 292, 10.2135/cropsci1971.0011183X001100020038x

Burson, 1982, Canadian Journal of Genetics and Cytology, 24, 219, 10.1139/g82-023

Burson, 1992, Genome, 35, 332, 10.1139/g92-050

Burson, 1973, Crop Science, 13, 739, 10.2135/cropsci1973.0011183X001300060045x

10.1186/1471-2156-14-50

Clarkson, 2005, New Phytologist, 168, 241, 10.1111/j.1469-8137.2005.01480.x

Comai, 2005, Nature Reviews. Genetics, 6, 836, 10.1038/nrg1711

Cuadrado, 2013, PLoS One, 8, 10.1371/journal.pone.0081385

Darriba, 2012, Nature Methods, 9, 772, 10.1038/nmeth.2109

Denham, 2005, Annals of the Missouri Botanical Garden, 92, 463

Douglas, 2015, Proceedings of the National Academy of Sciences of the United States of America, 112, 2806, 10.1073/pnas.1412277112

Doyle, 1987, Phytochemical Bulletin, 19, 11

Dubcovsky, 1995, Genetics, 140, 1367, 10.1093/genetics/140.4.1367

Espinoza, 2000, International Journal of Plant Sciences, 161, 221, 10.1086/314250

Fukui, 1994, Theoretical and Applied Genetics, 87, 893, 10.1007/BF00225782

Galdeano, 2016, Journal of Plant Research, 129, 697, 10.1007/s10265-016-0813-4

Garcia, 2009, Genome, 52, 1012, 10.1139/G09-077

Garcia, 2017, The Plant Journal, 89, 1020, 10.1111/tpj.13442

Giussani, 2009, Systematic Botany, 34, 32, 10.1600/036364409787602258

Gouja, 2015, Plant Systematics and Evolution, 301, 1569, 10.1007/s00606-014-1183-9

Gu, 2003, Plant Science, 164, 279, 10.1016/S0168-9452(02)00410-7

Hodges, 1994, Proceedings of the National Academy of Sciences of the United States of America, 91, 5129, 10.1073/pnas.91.11.5129

Huang, 2017, PLoS One, 12

Huelsenbeck, 2001, Bioinnformatics, 17, 754, 10.1093/bioinformatics/17.8.754

Kolano, 2012, Botanical Journal of the Linnean Society, 170, 220, 10.1111/j.1095-8339.2012.01286.x

Kolano, 2016, Molecular Phylogenetics and Evolution, 100, 109, 10.1016/j.ympev.2016.04.009

Leitch, 2004, Biological Journal of the Linnean Society. Linnean Society of London, 82, 651, 10.1111/j.1095-8312.2004.00349.x

Lim, 2000, Chromosoma, 109, 245, 10.1007/s004120000074

Lim, 2004, Biological Journal of the Linnean Society. Linnean Society of London, 82, 599, 10.1111/j.1095-8312.2004.00344.x

Liu, 2011, BMC Biology, 11, 157

Liu, 2009, Journal of Genetics and Genomics, 36, 519, 10.1016/S1673-8527(08)60143-5

Lunerová, 2017, Plant Systematics and Evolution, 303, 1043, 10.1007/s00606-017-1442-7

Ma, 2005, Cytogenetic and Genome Research, 109, 236, 10.1159/000082406

Madlung, 2013, Heredity, 110, 99, 10.1038/hdy.2012.79

Madlung, 2013, Cytogenetic and Genome Research, 140, 270, 10.1159/000351430

Masterson, 1994, Science, 264, 421, 10.1126/science.264.5157.421

Mishima, 2002, Chromosoma, 110, 550, 10.1007/s00412-001-0175-z

Moraes Fernandes, 1968, Canadian Journal of Genetics and Cytology, 10, 131, 10.1139/g68-018

Pedrosa, 2002, Genetics, 161, 1661, 10.1093/genetics/161.4.1661

Pellicer, 2013, Botanical Journal of the Linnean Society, 171, 655, 10.1111/boj.12001

Pires, 2004, American Journal of Botany, 91, 1022, 10.3732/ajb.91.7.1022

Quarín, 1990, Botanical Gazette, 151, 366, 10.1086/337837

Renny-Byfield, 2014, American Journal of Botany, 101, 1711, 10.3732/ajb.1400119

Renny-Byfield, 2011, Molecular Biology and Evolution, 28, 2843, 10.1093/molbev/msr112

Renny-Byfield, 2013, The Plant Journal, 74, 829, 10.1111/tpj.12168

Roa, 2012, BMC Evolutionary Biology, 12, 225, 10.1186/1471-2148-12-225

Roa, 2015, Cytogenetic and Genome Research, 146, 243, 10.1159/000440930

Rosato, 2015, AoB Plants, 7, 10.1093/aobpla/plv135

Rua, 2010, Plant Systematics and Evolution, 288, 227, 10.1007/s00606-010-0327-9

Sang, 1997, American Journal of Botany, 84, 1120, 10.2307/2446155

Scataglini, 2014, Plant Systematics and Evolution, 300, 1051, 10.1007/s00606-013-0944-1

Shaw, 2005, American Journal of Botany, 92, 142, 10.3732/ajb.92.1.142

Soltis, 2000, Proceedings of the National Academy of Sciences of the United States of America, 97, 7051, 10.1073/pnas.97.13.7051

Soltis, 2004, Biological Journal of the Linnean Society. Linnean Society of London, 82, 485, 10.1111/j.1095-8312.2004.00335.x

Soltis, 2014, American Journal of Botany, 101, 1057, 10.3732/ajb.1400178

Soltis, 2016, American Journal of Botany, 103, 1146, 10.3732/ajb.1500501

Souza-Chies, 2006, Genetica, 126, 15, 10.1007/s10709-005-1428-1

Speranza, 2009, Plant Systematics and Evolution, 282, 43, 10.1007/s00606-009-0205-5

Speranza, 2007, Plant Genetic Resources, 5, 14, 10.1017/S1479262107192145

Speranza, 2003, Genetics and Molecular Biology, 26, 449, 10.1590/S1415-47572003000400013

Steige, 2016, Current Opinion in Plant Biology, 30, 88, 10.1016/j.pbi.2016.02.006

Tate, 2006, Genetics, 173, 1599, 10.1534/genetics.106.057646

Vaio, 2005, Annals of Botany, 96, 191, 10.1093/aob/mci168

Vaio, 2007, Plant Systematics and Evolution, 265, 109, 10.1007/s00606-006-0506-x

Venuto, 2003, Crop Science, 43, 295, 10.2135/cropsci2003.2950

Wanzenböck, 1997, The Plant Journal, 11, 1007, 10.1046/j.1365-313X.1997.11051007.x

Weiss-Schneeweiss, 2012, Evolution, 66, 211, 10.1111/j.1558-5646.2011.01424.x

Weiss-Schneeweiss, 2013, Cytogenetic and Genome Research, 140, 137, 10.1159/000351727

Zozomová-Lihová, 2014, Annals of Botany, 113, 817, 10.1093/aob/mcu012

Zuloaga, 2005, Monograph Syst Bot Missouri Botanical Garden, 102, 1